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ABSTRACT

We propose a method for the reconstruction of a com-

plex signal from its Fourier phase only, where the phase

is known within a linear phase term, and the sequence's

length is unknown. The case of the phase known ex-

actly has received a lot of attention in the past, how-

ever, in most cases the phase can be estimated up to

a linear phase term whose slope is unknown. More-

over, in most cases of interest, the exact length of the

sequence which is to be recovered is unknown. As an

application of the reconstruction from phase technique,

we propose a method for blind channel identi�cation.

1. INTRODUCTION

Reconstruction from phase only has received a lot of

attention due to its applicability to important prac-

tical problems. In many cases the desired signal has

been distorted by some mechanism that is known to

a�ect the signal's Fourier magnitude only. Such sit-

uations occur approximately in long-term exposure to

atmospheric turbulence or when images are blurred by

defocused lenses with circular aperture stops [1]. As a

consequence, the observed spectrum is distorted only

magnitude-wise.

It has been established [2] that a real FIR sequence

that has no zeros on the unit circle and in conjugate re-

ciprocal pairs can be reconstructed within a scale factor

from its Fourier phase only, and several reconstruction

approaches have been proposed [2], ([4] and references

therein). These methods assume that the true phase, or

its principal argument, is available, and that the length

and the region of support of the sequence to be recov-

ered is known. Most of them are iterative schemes that

during each iteration force an initial estimate of the se-

quence to be nonzero only within its known region of
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support, and have the given phase. Most phase estima-

tion procedures, however, return the phase within a lin-

ear phase term, which is unknown and thus shifts by an

unknown amount the region of support of the sequence.

The case of unknown length has been addressed in the

past through rank determination [2], which is a sensi-

tive task when slight disturbances are present in the

data.

In this paper we show that a complex FIR sequence

which does not contain zero-phase convolutional com-

ponents and does not have zeros on the unit circle is

uniquely characterized up to a complex scalar by its

Fourier-phase only. A reconstruction procedure is given

in Section 2. In Section 3 the proposed method is ap-

plied for blind system identi�cation. Simulation results

are given in Section 4.

2. SIGNAL RECONSTRUCTION FROM

PHASE

Proposition 1 A FIR sequence which does not con-

tain zero-phase convolutional components and has no

zeros on the unit circle is uniquely characterized up to

a scalar by its Fourier-phase only.

Proof :

The proof for a real FIR sequence can be found in [2].

For the case of a complex sequence the proof can be

modi�ed as follows. Let x(k) and y(k) be two FIR

sequences with no zeros on the unit circle, which have

the same Fourier phases, and do not contain zero-phase

convolutional components, and let X(z); Y (z) be the

corresponding Z-transforms. The sequence correspond-

ing to

G(z) = X(z)Y �(1=z�) (1)

is a zero-phase sequence. Let z0 be a zero of X(z).

Then z0 is also a zero of G(z) and since G(z) is zero-

phase, 1=z�
0
is a zero of G(z) too. Since the zeros of



G(z) are the zeros of X(z) and Y �(1=z�), 1=z�
0
must be

a zero of either X(z) or Y �(1=z�). The sequence x(k)

does not contain zero-phase convolutional components,

thus 1=z�
0
cannot be its zero, therefore 1=z�

0
is a zero of

Y �(1=z�). Equivalently, z0 is a zero of Y (z), i.e., the

FIR sequences X(z) and Y (z) have the same zeros, or

equivalently, x(k) = cy(k), where c is a constant. 2

A procedure for system reconstruction from dis-

cretized phase is outlined in the following. Let

x(k); k = 0; :::; N � 1 be a FIR, generally complex se-

quence that has no zeros on the unit circle, does not

contain zero-phase convolutional components, and let

�x(!) be its Fourier-phase. Initially we will assume

that the length N is known, and later we consider the

case of unknown length.

From the fact that the phase of X(!) equals �x(!)

we get:
Im[X(!)]

Re[X(!)]
= tan(�x(!)): (2)

Expressing X(!) in terms of x(k) and after some math-

ematical manipulations we get:

N�1X

k=1

xR(k)sin(!n � �x(!))

�

N�1X

k=0

xI(k)sin(!n + �0
x
(!)) = sin(�x(!)); (3)

where xI(k); xR(k) are the imaginary and real parts

of x(k),

�0
x
(!) = sgnf�x(!)g

�

2
� �x(!); (4)

and was taken xR(0) = 1. Equation (3) is an extension

of a similar expression presented in [2] for the case of

a real signal.

Evaluating (3) at L discrete frequencies f! =
2�

L
k; k = 0; ::; L� 1g, we can form the system of equa-

tions:

�xx̂ = �x; (5)

where

x̂ = [xR(1); . . . ; xR(N �1); xI(0); xI(1); . . . ; xI(N �1)]

(6)

�x = [sin(�x(0)); sin(�x(
2�

L
)); . . . ; sin(�x(

2�

L
(L�1)))]T ;

(7)

and �x can be easily inferred from (3).

Since there are 2N � 1 unknowns to be estimated,

L must be chosen so that L > 2N�1. Actually any set

of discrete frequencies can be used to form the matrix

�x as long as the number of these frequencies is greater

that 2N � 1.

The matrix �x has full (column) rank [2] and the

least squares solution of (5) is

x̂x = (�T

x
�x)

�1�T

x
�x: (8)

An adaptive solution can also be obtained via LMS al-

gorithm. It should be noted that it is only the principal

argument of the phase that is required in (5), since the

phase appears inside a sine term.

Unknown linear phase term

If �x(!) is known within a linear phase term k!,

where k is an unknown integer in the range [N1; :::; N2],

prior to applying (8) a linear term l! must be sub-

tracted from �x(!), where l is an integer in the range

[N1; :::; N2]. If a solution is found it will be equal to

x(k) within a scalar constant. Let x̂l the least squares

(LS) solution of (5) corresponding to phase �x(!)� l!.

To check if x̂l is an acceptable solution we can check

how small the LS error is, or as a more robust way, we

propose to check if the di�erence between its phase and

�x(!) is a straight line in !.

Unknown length N

It can be shown that the rank of a matrix similar to

�x of (5) equals 2N�1, where N is the sequence length.

Thus we can always overestimate the length, form the

matrix �x and determine its rank. Rank determina-

tion, however, is not an easy task in the presence of

even slight noise in the data.

Two FIR sequences corresponding to the same

Fourier-phase and di�erent lengths di�er by a zero-

phase convolutional component. If we apply the proce-

dure outlined above to estimate x(k) from �x(!) based

on a length less that N we will �nd no solution [5]. For

length greater that N we will �nd a solution that is

equal to the convolution of x(k) with a zero-phase se-

quence. The length of this zero-phase sequence will be

equal to the amount of the length overestimate. Thus,

starting from a small length and keep increasing it, the

�rst solution found is the right one.

Unknown linear phase term and unknown length

The procedure for the reconstruction of x(k) from

its phase known within a linear phase term !k is sum-

marized as follows. Let N be the true length of x(k),

l be a guess for it, and �x(!) be the estimated phase.

The following loop is implemented:

For l = 2; 3; :::

For m = �(l � 1) : l � 1

Evaluate (8) based on the phase

�m(!) = �x(!) �m!; (9)



and let xm;l be the corresponding solution.

Let the Fourier-phase of the solution be

�xm;l
(!). If e(!)

4
= �x(!) � �xm;l

(!) is a

straight line in ! then xm;l is the right solu-

tion, i.e., xm;l(k) = x(k), and the iteration

stops here. If not, then the loop in m pro-

ceeds for the next value of m.

end

end

To determine whether e(!) is a straight line, we

propose to perform a least-squares �t of e(!) to the

equation of a line. Let E(l;m) be the LS error of the

�t corresponding to length l and phase �m(!), and let

E(l) = minmE(l;m).

For each value of l, the reconstructed sequence cor-

responding to the location of the minimum in E(l;m)

is a potential solution. For l � N the LS error ex-

hibits a profound minimum that stays almost constant

as l increases, and which is several orders or magnitude

smaller that the minima corresponding to l < N . We

can monitor E(l) as l increases, and when it stabilizes

to a low value, i.e., E(l0) � E(l0 + 1) � E(l0 + 2):::

choose as solution the one corresponding to length l0.

3. APPLICATION TO BLIND CHANNEL

ESTIMATION

Consider the single input two output (or two-channel)

problem

xi(k) = s(k) � hi(k) + ni(k); i = 1; 2; (10)

where

s(k) = e(k) � r(k) (11)

is a zero-mean, stationary, generally non-white process,

e(k) is a white random process and r(k) is a determin-

istic sequence; hi(k); i = 1; 2 correspond to the channel

responses and are assumed to have no common zeros;

and ni(k); i = 1; 2 are noise processes uncorrelated to

each other and to s(k). It is also assumed that there

are no common zeros and no zero-pole cancellations

between hi(k) and convolutional components of s(k).

Let gi(k) = r(k) � hi(k) and let ~gi(k) denote

the minimum-phase equivalent of xi(k) and ~Gi(!) its

Fourier Transform (i = 1; 2). In the noise free case

the minimum-phase equivalent can be obtained by ap-

plying any autocorrelation based system identi�cation

method on xi(k), [3]. In the noisy case, a similar pro-

cedure will return an estimate of the minimum-phase

equivalent. Let [6]

Smin(!) = Sx1x2(!)
~G1(!) ~G

�

2
(!)

Smax(!) = Sx1x2(!)
~G�

1
(!) ~G2(!) (12)

where Sx1x2(!) is the cross spectrum of the channel

outputs. Then it holds:

argfSi1i2(!)g =
1

2
argfSmin(!)g+

1

2
k1!

argfSo1o2 (!)g =
1

2
argfSmax(!)g +

1

2
k2!; (13)

where k1; k2 are integers, Si1i2(!) is the cross-spectrum

of the minimum-phase parts of h1(k) and h2(k), i.e.,

i1(k) and i2(k), and So1o2 (!) is the cross-spectrum

of the maximum-phase parts of h1(k) and h2(k), i.e.,

o1(k) and o2(k). Let hmin(k), hmax(k) be the inverse

Fourier transforms of Si1i2(!) and So1o2 (!), respec-

tively, i.e.,

hmin(k) = i1(k) � i
�

2
(�k)

hmax(k) = o1(k) � o
�

2
(�k) (14)

The channel reconstruction is achieved after the fol-

lowing observation. The Fourier phase of hmin(k) can

be estimated from the data up to a linear phase com-

ponent (via (12) (13)). The sequence hmin(k), due to

assumption on the channels, satis�es the conditions

to be reconstructed from its phase only. Although

a linear phase term is missing from its exact phase,

hmin(k) can still be reconstructed via the procedure

outlined above. The reconstructed sequence hmin(k),

can be decomposed into its minimum and maximum

phase parts, or equivalently, the minimum phase parts

of the channels. This decomposition can be achieved

in several ways (e.g. via cepstrum, or polynomial root-

ing). Similarly, hmax(k) can be reconstructed from its

phase given in (13) and lead to the maximum phase

parts of the channels. Finally the channels can be re-

constructed as the convolution of their minimum and

maximum phase parts.

In the presence of noise and �nite data lengths one

can only obtain an estimate of Smin(!) in (12), since

errors will be present in the minimum-phase equivalent

estimates. The propagation of noise to the phase of

Smin(!) and to the reconstructed sequence hmin(k) is

studied in [7], [6].

4. SIMULATION EXAMPLE

In this Section we demonstrate the robustness of the

signal reconstruction from phase procedure, applied on

the two channel problem introduced in Section 3. We

show that although the phase is not exactly known,

since noise is present in the observations (see (10)),

and although the phase can only be estimated up to an

unknown linear phase term, and the length of the chan-

nels is unknown, the proposed procedure still performs

very well.



In order to simulate a single input two output sit-

uation, we created a channel as a superposition of two

delayed raised cosine pulses,

h(t) = c(t; 0:11) + 0:8c(t� 0:7; 0:11) (15)

where c(t; a) denotes a raised cosine pulse with roll-

o� factor a. The channel h(t) was truncated to 6

symbol intervals and two channels of length 6 each

were generated by sampling h(t) twice during each pe-

riod. A non-white random process s(k) was also gen-

erated by �ltering a white process through the �lter

r(k) = [1; 0:6; 1:4]. This process was then passed

through the channels h1(k) and h2(k) to create x1(k)

and x2(k), and noise at signal-to-noise ratio 10 dB was

added to the outputs.

The channels were reconstructed according to the

method of Section 3 and the signal reconstruction from

phase procedure of Section 2 was used, with unknown

linear phase term and unknown lengths for the se-

quences hmin(k) and hmax(k) (see (14)). We used 100

samples of the output sequences and carried out 100

Monte Carlo simulations, with di�erent realizations for

the input and noise processes. The reconstructed chan-

nels h1(k); h2(k) were combined after each simulation,

to form an estimate of the channel h(t). The results

are shown in Fig. 1, where the actual channel h(k)

is shown in solid line, the average over 100 estimates

is shown in dashed line and the dotted lines indicate

standard deviation. We see that, even when the phase

contains estimation errors, since the SNR is low, and

even when the linear phase term and the length of the

signals is unknown, the proposed procedure for system

reconstruction is robust.

The performance of the proposed method depends

critically on the phase samples used in forming the sys-

tem (5). If these phase samples contain signi�cant esti-

mation errors, then the performance is degraded. How-

ever, as mentioned in Section 2, any set of L > 2N � 1

discrete phase samples can be used to form the system

matrix �x. The phase errors analysis in [6], [7] indi-

cates which phase samples have low variance/bias and

should be used to form �x.
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