
A FAST GAUSS-NEWTON PARALLEL-CASCADE ADAPTIVE TRUNCATED

VOLTERRA FILTER

Thomas M. Panicker and V. John Mathews

Department of Electrical Engineering, University of Utah, Salt Lake City, UT 84112.

ABSTRACT

This paper introduces a computationally e�cient
Gauss-Newton type adaptation algorithm for paral-
lel-cascade realizations of truncated Volterra systems with
arbitrary, but �nite order nonlinearity. Parallel-cascade
realizations implement higher-order Volterra systems us-
ing parallel and multiplicative combinations of lower-order
Volterra systems. The complexity of our system is com-
parable to the complexity of the system model itself, and
is considerably less than that of the fast RLS Volterra �l-
ters. Results of experiments comparing the Gauss-Newton
method with a competing structure with similar computa-
tional complexity as well as demonstrating the capability of
parallel-cascade systems to approximate truncated Volterra
systems are also included in the paper.

1. INTRODUCTION

The output of a homogeneous and causal pth order Volterra
system with N -sample memory is related to its input as [1]

y(n) =

N�1X
mp=mp�1

� � �

N�1X
m1=0

hp(m1; � � � ; mp)

�x(n�m1) � � �x(n�mp): (1)

In the above equation, we have explicitly made use of the
invariance of the coe�cients with respect to permutations
of their indices. It has been shown in [2] that any sys-
tem with input-output relationship as in (1) can be repre-
sented exactly using a parallel combination of components
as shown in Figure 1. The advantages of realizing higher-
order Volterra systems using parallel-cascade structures are
also discussed in [2].

2. PARALLEL-CASCADE REALIZATION

The output of the parallel-cascade system of Figure 1 can
be expressed as

y(n) =

rX
i=1

�i
�
XT
N;l(n)Ui

� �
XT
N;p�l(n)Vi

�

=

rX
i=1

�iyl;i(n)yp�l;i(n); (2)

where l < p and the vector XN;p1 (n) has

�
N + p1 � 1

p1

�
elements and contains all possible p1th order product sig-
nals of the form x(n � k1)x(n � k2) � � �x(n � kp1), and

order 

order

order

order

order

order

p-l

l

p-l

l

p-l

l

y(n)

σ

σ

σ

1

2

r

x(n)

Figure 1. A parallel-cascade realization of a pth
order Volterra kernel. Each block represents a
Volterra system of the order shown within.

0� k1 � k2 � � � � � kp1�N � 1. The vectors Ui and Vi

are coe�cient vectors of appropriate dimensions. The sig-
nal yl;i(n) in (2) is de�ned as the output of a homogeneous
lth order Volterra system given by

yl;i(n) = X
T
N;l(n)Ui: (3)

The signal yp�l;i(n) is also de�ned in a similar manner.
The objective of this paper is to derive a computation-

ally e�cient Gauss-Newton type adaptation algorithm for
truncated Volterra �lters when the system model is real-
ized using a parallel-cascade structure. The computational
complexity of our technique is comparable to the complexity
of the system model itself. Experimental results presented
later in this paper show that the fast algorithm exhibit fast
convergence characteristics when compared with the LMS
adaptive Volterra �lters. Realizations of the adaptive �lter
that employs fewer than the maximum necessary number of
parallel branches often perform similarly to more complex
algorithms with larger number of branches.

3. GAUSS-NEWTON RECURSION FOR
PARALLEL-CASCADE VOLTERRA

SYSTEMS

Consider the problem of estimating a desired response sig-
nal d(n) as the output of a homogeneous pth order adap-
tive Volterra system employing the parallel-cascade struc-
ture with r branches. The output of the adaptive �lter may



be written as

d̂(n) =

rX
i=1

�i(n)yl;i(n)yp�l;i(n)

=

rX
i=1

�i(n)
�
X
T
N;l(n)Ui(n)

�
�
�
X
T
N;p�l(n)Vi(n)

�
: (4)

Let e(n) = d(n)�d̂(n) denote the estimation error at time n.
Our objective is to develop a Gauss-Newton adaptive �lter
that attempts to reduce

�(n) =
1

2
E

n
j e(n) j2

o
(5)

at each iteration. Taking the partial derivative of �(n) with
respect to Um(n), we get

@�(n)

@Um(n)
= �E

n
e(n)�m(n)XN;l(n)X

T
N;p�l(n)Vm(n)

o
= �E

n
e(n)�m(n)ym;p�l(n)XN;l(n)

o
: (6)

The estimation problem may now be considered as
one in which we attempt to estimate d(n) using
�m(n)ym;p�l(n)XN;l(n). A Gauss-Newton adaptation al-
gorithm [3] may be derived for this case as

Um(n+ 1) =Um(n) + �R
�1
u;m(n)Xm;N;l(n)e(n); (7)

where � is a convergence parameter, Xm;N;l(n) is de�ned
as

Xm;N;l(n) = �m(n)ym;p�l(n)XN;l(n); (8)

and Ru;m(n) is an estimate of E
n
Xm;N;l(n)X

T
m;N;l(n)

o
ob-

tained in our system as

Ru;m(n) =

nX
i=1

�
n�i

Xm;N;l(i)X
T
m;N;l(i): (9)

Let us de�ne a gain vector ku;m(n) for each branch as

ku;m(n) = R
�1
u;m(n)Xm;N;l(n): (10)

Substituting (10) in (7), the update equation becomes

Um(n+ 1) = Um(n) + �ku;m(n)e(n): (11)

The gain vector ku;m(n) can be computed using the matrix
inversion lemma as is typically done in the derivation of
conventional RLS algorithms [4]. It is straightforward to
develop similar update equations for Vm(n) and �m(n).
The update equation for Vm(n) is given by

Vm(n + 1) = Vm(n) + �kv;m(n)e(n); (12)

where
kv;m(n) = R

�1
v;m(n)Xm;N;p�l(n): (13)

In (13), Xm;N;p�l(n) is given by

Xm;N;p�l(n) = �m(n)ym;l(n)XN;p�l(n): (14)

Table 1. Gauss-Newton algorithm for parallel-
cascade Volterra �lter.

Initialization
for m = 1 : r;

Pu;m(0) = ��1I

Pv;m(0) = ��1I

P�;m(0) = ��1

ui;m(0) =
n

1 ; if i = m
0 ; otherwise

vi;m(0) =
n

1 ; if i = m
0 ; otherwise

�m(0) = 1
Main Routine

for m = 1 : r;

Xm;N;l(n) = �m(n)
�
XT
N;p�l(n)Vm(n)

�
XN;l(n)

�u;m(n) = XT
m;N;l(n)Pu;m(n� 1)

�u;m(n) = �+ �u;m(n)Xm;N;l(n)

ku;m(n) =
Pu;m(n�1)Xm;N;l(n)

�u;m(n)

P
0

u;m(n� 1) = ku;m�u;m(n)

Pu;m(n) = 1
�

�
Pu;m(n� 1)�P

0

u;m(n� 1)
�

Pu;m(n) =
Pu;m(n) +PT

u;m(n)

2
Similarly update fkv;m(n) and k�;m(n);m = 1; 2; � � � ; rg

e(n) = d(n)�

rX
m=1

�m(n)
�
X
T
N;l(n)Um(n)

�
�
�
XT
N;p�l(n)Vm(n)

�
for m = 1 : r;
Um(n+ 1) = Um(n) + �ku;m(n)e(n)
Vm(n+ 1) = Vm(n) + �kv;m(n)e(n)
�m(n+ 1) = �m(n) + �k�;m(n)e(n)

� = a small positive constant
I = Identity Matrix

and Rv;m(n) is de�ned as

Rv;m(n) =

nX
i=1

�
n�i

Xm;N;p�l(i)X
T
m;N;p�l(i): (15)

Similarly, the update equation for �m(n) is given by

�m(n+ 1) = �m(n) + �k�;m(n)e(n); (16)

where
k�;m(n) = R

�1
�;m(n)X�;m(n) (17)

and X�;m(n) and R�;m(n) in the above equation are given
by

X�;m(n) = ym;l(n)ym;p�l(n) (18)

and

R�;m(n) =

nX
i=1

�
n�i

X
2
�;m(i); (19)

respectively. In all the experiments described later we chose
� = (1 � �), such that the tracking of the autocorrelation
matrix as well as the adaptation of the coe�cients have
comparable speeds.
Table 1 describes the Gauss-Newton algorithm for updat-

ing the coe�cient vectors. In Table 1, ui;j(n) and vi;j(n)
represent the jth element of the coe�cient vector Ui(n)



and Vi(n), respectively. Similarly, the matrices Pu;m(n)
and Pv;m(n) represent the matrices R�1

u;m(n) and R�1
v;m(n),

respectively. The scalar P�;m(n) represent R
�1
�;m(n).

4. A FAST GAUSS-NEWTON RECURSION
FOR PARALLEL-CASCADE VOLTERRA

SYSTEMS

The Gauss-Newton algorithm described above is computa-
tionally demanding since the gain vector has to be eval-
uated for each branch. In this section, we derive a fast
Gauss-Newton method for our problem by making certain
judicious approximations. Speci�cally, the approximations
are such that only one gain vector need to be calculated for
updating all Um(n)'s. Similarly, Vm(n)'s can be updated
using a second gain vector.
Let us rewrite the estimation error e(n) as

e(n) = dm(n)� d̂m(n); (20)

where dm(n) and d̂m(n) are given by

dm(n) = d(n)�

rX
k=1;k 6=m

�k(n)yl;k(n)yp�l;k(n) (21)

and
d̂m(n) = �m(n)yl;m(n)yp�l;m(n); (22)

respectively. The estimation error in (20) can be written as

e(n) = �u;m(n)[
dm(n)

�u;m(n)
�U

T
m(n)XN;l(n)]; (23)

where

�u;m(n) = �m(n)yp�l;m(n)

= �m(n)[X
T
N;p�l(n)Vm(n)]: (24)

The cost function in (5) can be written using the above
de�nitions as

�(n) =
1

2
E

(
�
2
u;m(n)

���� dm(n)

�u;m(n)
�U

T
m(n)XN;l(n)

����
2
)
:

(25)
The estimation problem can now be viewed as one in which
we attempt to estimate dm(n)=�u;m(n) with the data vector
XN;l(n). The update equation for Um(n) can therefore be
written as

Um(n+ 1) = Um(n) + �R
�1
l (n)XN;l(n)�

2
u;m(n)e

0
u;m(n);

(26)
where e0u;m(n) is given by

e
0
u;m(n) =

dm(n)

�u;m(n)
�U

T
m(n)XN;l(n) (27)

and matrix Rl(n) is given by

Rl(n) =

nX
i=1

�
n�i

XN;l(i)X
T
N;l(i): (28)

It is straightforward to see that e0u;m(n) and e(n) are related
as

�
2
u;m(n)e

0
u;m(n) = �u;m(n)e(n): (29)

We can write the update equation for Um(n) using (29) as

Um(n+ 1) =Um(n) + ��u;m(n)ku(n)e(n); (30)

where

ku(n) = R
�1
l (n)XN;l(n): (31)

It is important to recognize that the recursions obtained
above is only an approximation to the system derived in
the previous section. This is because the weighting factor
�2
u;m(n) in the de�nition of the cost function in (25) de-

pends on the coe�cients of the adaptive �lter and we have
neglected such dependencies in the derivation of the update
equations. However, we will see in the experimental results
that there is not a signi�cant loss of performance with the
use of this approximation.

Similarly, the update equation for Vm(n) is given by

Vm(n+ 1) = Vm(n) + ��v;m(n)kv(n)e(n); (32)

where �v;m(n) and kv(n) are given by

�v;m(n) = �m(n)yp�l;m(n) (33)

and

kv(n) = R
�1
p�l(n)XN;p�l(n); (34)

respectively. In (34), Rp�l(n) is the least-squares estimate
of the autocorrelation matrix of XN;p�l(n) obtained as

Rp�l(n) =

nX
i=1

�
n�i

XN;p�l(i)X
T
N;p�l(i): (35)

The update equation for �m(n) is given by

�m(n+ 1) = �m(n) + ���;m(n)e(n); (36)

where ��;m(n) is given by

��;m(n) = yl;m(n)yp�l;m(n): (37)

The advantage of this approach is that the gain vector
ku(n) and kv(n) is the same for all the Ui(n)'s and Vi(n)'s
corresponding to di�erent branches. Furthermore, it is pos-
sible to update ku(n) and kv(n) using the forward and
backward prediction errors associated with the data vec-
tors XN;l(n) and XN;p�l(n) similar to the derivation of the
fast RLS adaptive �lters [5].

5. COMPUTATIONAL COMPLEXITY

The computational complexity associated with a fast RLS
adaptive �lter implemented in direct form structure is
O(N2p�1) arithmetical operations for a pth order Volterra
system model with N -sample memory. For the fast Gauss-
Newton parallel-cascade structure, the complexity depends
on the particular decomposition employed. A pth or-
der �lter realized using r, p=2th order branches require

rO(Np=2) + O(Np) arithmetical operations per iteration.
This complexity is comparable to the complexity of the sys-
tem model.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

TIME

M
E

A
N

-S
Q

U
A

R
E

D
 E

R
R

O
R

Gauss-Newton algorithm

Fast Gauss-Newton algorithm

Direct LMS

Figure 2. Mean-squared error of the adaptive �lters
for colored Gaussian input and measurement noise
with variance 0.01.

6. SIMULATION EXAMPLES

Two experiments were conducted to evaluate the perfor-
mance of the algorithm in identifying an unknown, homoge-
neous fourth-order truncated Volterra �lter from measure-
ments of input and output signals in a stationary operating
environment. The coe�cients of the unknown system were
given by

h(k1; k2; k3; k4) =
20:88

2�[1:54 + a41 + a42 + a43 + a44]
3=4

+ u(k1; k2; k3; k4); (38)

where ai = (ki � 1), 0 � k1; k2; k3; k4 � 4 and
u(k1; k2; k3; k4) was a uniformly distributed random vari-
able in the range [-0.1,+0.1] that is also symmetric in its
indices k1; k2; k3 and k4. The maximum number of branches
in the parallel-cascade realization of the above �lter is �f-
teen. The input signal was a colored Gaussian signal with
unit variance and zero mean value. The desired response
signal was generated by processing the signal with the sys-
tem of (38) and then corrupting the output with an un-
correlated white Gaussian noise sequence with zero mean
value and variance 0:01. Figure 2 displays a plot of the
mean-squared estimation error of direct form LMS and the
two Gauss-Newton parallel-cascade algorithms developed in
this paper. The results were obtained by averaging the re-
sults of one hundred independent experiments. The LMS
Volterra �lter employed a step size � = 8:3 � 10�7. The
Gauss-Newton methods used parameter values of � = 0:99
and � = 0:01. These values were selected so that the �rst
version of the Gauss-Newton method and the LMS adaptive
�lter resulted in almost identical steady-state-errors. The
adaptation techniques developed in this paper perform sig-
ni�cantly better than the direct form LMS Volterra �lter
for this particular experiment. The performance of the fast
Gauss-Newton algorithm is particularly noteworthy since
its computational complexity is of the same order as that
of the LMS adaptive �lter.
Figure 3 compares the performance of the fast Gauss-

Newton algorithm employing ten and �fteen branches. It is
di�cult to see two separate curves in this plot, indicating
that the performance degradation is not signi�cant when

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

TIME

M
E

A
N

-S
Q

U
A

R
E

D
 E

R
R

O
R

Fast Gauss-Newton algorithm with 10 and 15 branches

Figure 3. Mean-squared error of the adaptive �l-
ters for colored Gaussian input and measurement
noise with variance 0.01 with reduced number of
branches.

only ten branches are employed in this particular experi-
ment. The steady-state errors evaluated over the last ten
thousand samples showed a slightly higher value for the sys-
tem employing ten branches than the one that used �fteen
branches.

7. CONCLUSIONS

This paper presented two Gauss-Newton algorithms for
adaptive parallel-cascade truncated Volterra �lters. The
computational complexity of the fast Gauss-Newton
method is comparable to that of the complexity of the sys-
tem model itself. This, along with its superior performance
over the LMS adaptive �lter makes this method an attrac-
tive option in applications of adaptive Volterra �lters.

REFERENCES

[1] M. Schetzen, \The Volterra and Wiener theories of nonlin-
ear systems" New York: Wiley, 1980.

[2] T. M. Panicker and V. J. Mathews, \Parallel-cascade re-
alizations and approximations of truncated Volterra sys-
tems," Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing, Volume 3, pp.
1590-1593, Atlanta, Georgia, 1996.

[3] L. Ljung, \System Identi�cation - Theory for the user"
Prentice-Hall, Inc., Englewood Cli�s, New Jersy 07632,
1987.

[4] S. Haykin, \Adaptive Filter Theory" third edition, Prentice
Hall, Englewood Cli�s, New Jersy, 1996.

[5] J. Lee and V. J. Mathews, \A fast least squares adaptive
second-order Volterra �lter and its performance analysis"
IEEE Trans. Signal Proc., vol. 41, no. 3, pp. 1087-1102,
March 1993.


