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ABSTRACT

This paper derives su�cient time-varying bounds on the
maximum variation of the coe�cients of an exponentially
stable, linear, time-varying and recursive �lter. The sta-
bility bound is less conservative than all previously derived
bounds for time-varying IIR systems. The bound is then
applied to control the step size of output error adaptive IIR
�lters to achieve exponentially stable operation. Experi-
mental results that demonstrate the good stability char-
acteristics of the resulting algorithms are included in this
paper.

1. INTRODUCTION

Adaptive IIR �lters have been the subject of active research
over the last three decades [3], [4], [5], [6], [9]. Despite a
large amount of work that has been done, some open issues
still remain. One of these issues is that of ensuring the
stability of the time-varying IIR �lter that results from the
adaptation process.
Researchers have attempted to derive adaptive IIR �lters

that operate in a stable manner in several di�erent ways.
One class of algorithms that includes the hyperstable adap-
tive recursive �lter (HARF) [4] requires a certain system
transfer function to be strictly positive real (SPR), which
is not easy to guarantee in practice. Another class of al-
gorithms employ lattice structures [6]. Such �lters are
guaranteed to be stable if the reection coe�cients that are
computed adaptively are bounded by one. However, there
are many applications in which direct form coe�cients are
required, and conversion from lattice to direct form is not
computationally e�cient. A third class of adaptive IIR �l-
ters employ stability monitoring by checking the location
of the instantaneous poles of the system and projecting the
coe�cients back to a region for which the instantaneous
poles are within the unit circle [4]. Unfortunately, time-
varying �lters may be unstable even when the instantaneous
poles are within the unit circle. Consequently, even though
projection-based techniques work well in a large number of
situations, they are not guaranteed to operate in a stable
manner for all input signals.
This paper presents a method for controlling the adapta-

tion step size to guarantee exponential stability of output
error adaptive IIR �lters. This method is based on a novel,
su�cient time-varying bound on the maximum allowable
coe�cient variation of exponentially stable time-varying lin-
ear recursive �lters with instantaneous poles inside the unit
circle. This bound is less conservative than all previously
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derived bounds that have been found in the literature [1],
[2]. It is well-known [1], [2], [6], [8] that if the poles of a re-
cursive time-varying linear system are always inside the unit
circle and if they are su�ciently slowly-varying, then the
recursive system itself is exponentially stable. Des�oer was
the �rst to prove this result for discrete-time systems and to
determine a su�cient upper bound for the maximum vari-
ation of the entries of the system matrix [2]. An additional
improvement on this bound was recently presented in [1].
In principle, we can develop exponentially-stable adaptive
IIR �lters by constraining their instantaneous poles to be
inside the unit circle and by using a su�ciently small step
size that forces the coe�cient variations to be bounded by
the su�cient bound described in [1] or [2]. However, such
stability bounds are very restrictive in the sense that the
speed of convergence of the adaptive �lters that limit the
step size sequence by these su�cient conditions is too slow
to be of use in many practical applications. The upper
bound we derive for the maximum allowable variation of
the �lter coe�cients is much less restrictive.
The rest of this paper is organized as follows. The new

stability bound is derived in Section 2. This bound is then
transformed into a bound on the step size of the adaptive
�lter. The maximum step size and other stability conditions
obtained in Section 2 are applied to ensure the exponential
stability of an adaptive output error algorithm in Section 3.
Simulation results presented in this section con�rm the good
stability properties of the stabilized adaptive algorithm.

2. SUFFICIENT STABILITY CONDITIONS
FOR SLOWLY VARYING DISCRETE-TIME,

LINEAR, RECURSIVE SYSTEMS

We consider a linear, time-varying and recursive system
with input-output relationship given by

y(k) =

N�1X
i=0

bi(k)u(k� i) +

N�1X
i=1

ai(k)y(k� i): (1)

Let

�(k) = [b0(k); : : : ; bN�1(k); a1(k); : : : ; aN�1(k)]
T (2)

denote the coe�cient vector and let the evolution of the
coe�cients be of the form

�(k + 1) = �(k) + �k (k); (3)

where �k is a time-varying scalar sequence. Our objective
is to �nd a su�cient bound on the squared-norm of the
increment vector �k (k) given by �2k 

T (k) (k) such that
the time-varying system of (1) is exponentially stable. From



such a result, we can immediately �nd a bound on �k for
guaranteeing the stability of the system. An adaptive �lter
with coe�cient update as in (3) will be exponentially stable
if �k is chosen smaller than or equal to such a bound. The
basis for our work is the following theorem proved in [8]:

Theorem 1 The linear state equation

X(k + 1) = A(k)X(k); X(k0) = X0 (4)

is uniformly exponentially stable if and only if there exists
an N �N matrix sequence Q(k) that is symmetric for all k
and such that

�I � Q(k) � �I (5)

and

A
T (k + 1)Q(k + 1)A(k+ 1)�Q(k) � ��I; (6)

where �, � and � are �nite positive constants.

In the theorem, the condition \matrix Q � �I" implies that
xTQx � �xTx for all vectors x.
One candidate sequence for Q(k) is the unique, symmet-

ric and positive de�nite solution of the discrete-time Lya-
punov equation

A
T (k)Q(k)A(k)�Q(k) = �IN : (7)

The solution for Q(k) is [8]

vec[Q(k)] = �[AT (k)
A
T (k)� IN2 ]

�1vec[IN ]; (8)

where vec[Q(k)] is a vector formed by stacking all the
columns of Q(k) and 
 denotes the Kronecker product.
This choice of the matrix Q(k) satis�es the bounds on the
spectral norm in the theorem if the instantaneous poles of
the system are inside the unit circle at all times [8]. It is
straightforward to show using (7) that

A
T (k+1)Q(k+1)A(k+1)�Q(k) = Q(k+1)�Q(k)� IN :

(9)
The problem of deriving a su�cient stability bound boils
down to �nding the maximum allowable coe�cient varia-
tions such that

kQ(k + 1)�Q(k)k � 1; (10)

where k(�)k denotes the spectral norm of the matrix (�).
Given the above result, we can check if a recursive linear
system is stable in two steps:

1. Verify that the instantaneous poles of the system are
inside the unit circle.

2. Determine if condition (10) is met for our choice of the
step size �k .

Using (10), we can determine an upper bound for the step
size �k in (3) that guarantees the stability of the recursive
system described in (1){(3). First, the following inequality
holds:

kQ(k + 1)�Q(k)k � kvec
�
Q(k+ 1)

�
� vec

�
Q(k)

�
k: (11)

In the hypothesis of slowly varying coe�cients, the following
approximation can be applied:

vec
�
Q(k + 1)

�
� vec

�
Q(k)

�
' r�vec

�
Q(k)] ���(k); (12)

where r� indicates the gradient vector operator with re-
spect to the coe�cient vector � and ��(k) = �(k+1)��(k).
We note from (3) that

��(k) = �k (k): (13)

From (10) and (11) we can derive a su�cient condition for
the exponential stability of the system in (4) to be

kvec
�
Q(k+ 1)

�
� vec

�
Q(k)

�
k � � < 1: (14)

We can substitute the approximation of (12) in the above
condition and manipulate the resulting expression to obtain
an explicit condition on �k for the stability of (4) to be

�k <
�

kr�vec
�
Q(k)

�
�  (k)k

: (15)

The stability condition of (10) is derived without resort-
ing to any approximation. However, this condition can be
employed in adaptive recursive �ltering applications only
with the help of projection techniques. Even though the
derivation of (15) employs an approximation that is based
on slow variations in the coe�cients, this condition has the
advantage of being useful in directly controlling the step
size of adaptation. In all the experiments we conducted,
the stability conditions of (10) and (15) gave similar re-
sults. Moreover, this stability bound is less conservative
than the bounds available in [1] and [2] for time-varying
recursive linear systems.

2.1. The Second-Order Case

The stability condition derived in the previous subsection
can be easily converted into explicit expressions in the �l-
ter coe�cients for time-varying second-order systems. Even
though the conditions we derived hold for any �lter order,
second-order systems are of particular importance because
the implementation of the stability conditions is simplest
when the adaptive �lter is realized as a cascade or paral-
lel connection of second-order sections. We consider the
following second-order �lter:

y(k) = a1(k)y(k� 1) + a2(k)y(k � 2) + b0(k)u(k)+
b1(k)u(k� 1) + b2(k)u(k � 2):

(16)
It is easy to check if the instantaneous poles of a second-
order system are inside the unit circle. The coe�cients of
the �lter a1(k) and a2(k) must satisfy the inequalities

ja1(k)j+ a2(k) < 1 (17)

and
a2(k) > �1: (18)

for all the instantaneous poles to be bounded by one.
The candidate Lyapunov matrix Q(k) for the system of

(16) is given by

Q(k) =

"
�2

a2(k)�1

r(k)
2a1(k)a2(k)

r(k)

2a1(k)a2(k)
r(k)

�
s(k)

r(k)

#
; (19)

where r(k) = �a32(k)+a
2
2(k)+a

2
1(k)a2(k)+a2(k)+a

2
1(k)�1

and s(k) = a32(k)� a22(k) + a21(k)a2(k) + a2(k) + a21(k)� 1:
Let

Q(k + 1)�Q(k) =

h
d11 d12
d12 d22

i
: (20)



The characteristic polynomial of this matrix is

p(�) = �
2
� (d11 + d22)�+ d11d22 � d

2
12: (21)

Verifying the condition of (10) is equivalent to determining
if the characteristic roots of (21) are bounded by one. Thus,
the stability test veri�es if

� d11d22 + d
2
12 > �1 (22)

and
jd11 + d22j � d11d22 + d

2
12 < 1: (23)

The condition in (17) and (18), and the condition in (22)
and (23) can be applied using a projection technique to
ensure the exponential stability of the time-varying and re-
cursive, second-order �lter. Since the number of iterations
necessary to meet these conditions is not known a priori,
it is preferable to limit the step size �k by means of condi-
tion (15). This condition translates to the following bound
on the step size for a second-order system:

�k �
r
2(k)vuuut 4

�
r(k) �  2(k)� (a2(k)� 1) � v(k)

�2
+

8
�
(a1(k) 2(k) + a2(k) 1(k)) � r(k)+

�a1(k)a2(k) � v(k)
�2

+
�
r(k) � w(k)� v(k) � s(k)

�2
;

(24)

where w(k) =
�
3a22(k) + a21(k) � 2a2(k) + 1

�
 2(k) +

2a1(k)
�
a2(k) + 1

�
 1(k) and v(k) =

�
� 3a22(k) + 2a2(k) +

a21(k) + 1
�
 2(k) + 2a1(k)

�
a2(k) + 1

�
 1(k):

We point out again that it is necessary to check if the
instantaneous poles of the updated �lter are inside the unit
circle at each time in order to ensure stable operation of the
system.
The computational complexity of calculating the step size

bound in (24) correspond to 16 multiplications, one square-
root operation and one division per second-order section.
Consequently, the complexity of implementing the stability
bounds for a cascade or parallel adaptive �lter is linearly
proportional to the order of the �lter. Furthermore, this
complexity is comparable to or smaller than the complexity
of adapting the coe�cients in many adaptive IIR �ltering
algorithms.

3. EXPERIMENTAL RESULTS

We now present the results of experiments that demon-
strate the usefulness of the bounds and the adaptive �lters
that utilize these bounds. The experiments also compare
the performance of the stabilized adaptive �lters with the
SHARF algorithm.
In the �rst set of results presented below, the adaptive

�lters were employed to identify an unknown, fourth-order
IIR �lter with transfer function

H(z) =
1

1 � 1:86z�1 + 0:8698z�2
+

2

1� z�1 + 0:5z�2
(25)

using measurements of the input and output signals. The
poles of the unknown system are located at [0:93 � 0:07j]
and [0:5 � 0:5j]. The adaptive �lters employed a parallel
connection of two second-order systems and were adapted
using an appropriate variation of the Gauss-Newton algo-
rithm [4]. The input of the unknown system was a colored
Gaussian signal obtained by �ltering a white Gaussian sig-
nal with zero mean value and unit variance with an FIR
�lter whose transfer function was given by

W (z) = 1 + 0:5z�1: (26)

The desired response signal was generated by processing
this signal with the unknown system and then corrupting
the output with an additive, zero-mean and white Gaussian
noise sequence that is statistically independent of the input
signal. The variance of the measurement noise was such
that the output signal-to-noise ratio was 30 dB. The adap-
tive �lter employed a di�erent step size sequence for each
second-order section and for the recursive and non-recursive
part of each section. The step size of the recursive part was
selected to be the minimum of 0.001 or the bound suggested
by our conditions, while that of the moving average part was
0.0005. The forgetting factor used in the evaluation of the
inverse of the autocorrelation matrix was 0.9999. Almost
all output error adaptive recursive �lters are susceptible to
converging to the wrong local minima of the squared es-
timation error surface. In the results presented here, we
compare the speed of convergence of various algorithms to
the correct solution. In order to do so, all the experiments
that resulted in convergence to wrong local minima were
eliminated from the calculation of the ensemble averages.
The results displayed in the �gures are averages of the �rst
�fty experiments in which the coe�cients converged to the
correct solution.
Figures 1a and 1d display the evolution of the ensemble

averages of the coe�cients of the parallel section that cor-
responds to the coe�cients 1:86 and 0:8698 of the unknown
system for two di�erent realizations of the stabilized adap-
tive �lter. Figures 1b and 1e provide similar comparisons for
the step size, while Figures 1c and 1f compare the ensemble
averaged squared estimation errors. Figures 1a-1c display
the results obtained by implementing the output error al-
gorithm with the stability condition of (24). Figures 1d-1f
present the corresponding results obtained using a projec-
tion algorithm employing the conditions in (22)-(23). We
can see from these results that the approximations assum-
ing slow-variations of the coe�cients to obtain (24) provide
reliable step size bounds. It appears that the approxima-
tions resulted in more conservative bounds than the the
conditions in (22)-(23), resulting in slightly slower conver-
gence speed. The initial values of the step size are small
in this example because the initial estimation error values
are large. Combined with the large error, the initial values
of the step size produced the largest changes possible that
still maintained the exponential stability of the system.
We now compare the performance of the stabilized adap-

tive IIR �lter using the closed form conditions in (24) with
that of the SHARF algorithm. In order to make the com-
parisons as fair as possible, we used a single second or-
der system for identifying an unknown second-order system
with transfer function

H(s) =
1

1� 1:9z�1 + 0:905z�2
: (27)

We used the same experimental conditions as in the previ-
ous example, with the di�erence that we employed the same
step size sequence for adapting the moving average and the
recursive coe�cients of the system.
The step size � was selected to be 0.0001 for the SHARF

algorithm so that the steady-state excess mean-square error
was identical to that of the stabilized adaptive IIR �lter of
this paper when the coe�cient sequence was selected as in
the previous set of experiments.
Figure 2 displays the evolution of the mean-squared esti-

mation error for the two algorithms. We can see from this
�gure that the SHARF algorithm converges much slower
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Figure 1. Learning curves for two stabilized adaptive IIR �lters.
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Figure 2. Comparison of the stabilized adaptive �lter of this paper and the SHARF algorithm.

than the method introduced in this paper in this experi-
ment.

4. CONCLUDING REMARKS

This paper presented a novel stability condition for time-
varying recursive linear systems. The stability bound ob-
tained in (15) is less conservative than all previously derived
bounds [1], [2] for time-varying recursive linear systems. In
particular, all the bounds converge to zero as the instanta-
neous poles approach the unit circle. The rate at which �(k)
approaches zero when the poles tends to the unit circle is
several orders of magnitude slower than the bound derived
in [2]. The time-varying bound on the step size of (15)
may be incorporated into any practical adaptive IIR �lter.
It is well-known that certain adaptive IIR �ltering algo-
rithms such as Feintuch's method diverge for all choices of
the step size for certain input signals. Experimental results
as well as theoretical considerations indicate that the step
size bound derived in this paper eventually goes to zero in
such situations, thus preserving the exponential stability of
the adaptive �lter.

REFERENCES

[1] Amato F., Celentano G. and Garofalo F., \New Suf-
�cient Conditions for the Stability of Slowly Vary-
ing Linear Systems," IEEE Trans. Automat. Contr.,
Vol.38, No.9, pp.1409-1411, Sep. 1993

[2] Des�oer C.A., \Slowly Varying Discrete System xi+1 =
Aixi," Electronic Letters, Vol.6, No.11, pp.339-340,
May 1970

[3] Johnson C.R. Jr, \Adaptive IIR Filtering: Current Re-
sults and Open Issues," IEEE Trans. Inform. Theory,
Vol.IT-30, No.2, pp.237-250, March 1984

[4] Ljung L. and S�oderstr�om T., Theory and Practice of
Recursive Identi�cation, M.I.T. Press, Cambridge MA,
1983

[5] Netto S.L., Diniz P.S.R. and Agathoklis P., \Adaptive
IIR Filtering Algorithms for System Identi�cation: A
General Framework," IEEE Trans. Education, Vol.38,
No.1, pp.54-66, Feb. 1995

[6] Regalia P.A., Adaptive IIR Filtering in Signal Process-
ing and Control, Marcel Dekker Inc., New York, 1995

[7] Rosenbrock H.H., \The Stability of Linear Time-
Dependent Control Systems," J. Electron. and Control,
Vol.15, No.1, pp.73-80, July 1963

[8] Rugh W. J., Linear System Theory, Prentice Hall In-
formation and System Science Series, Upper Saddle
River NJ, 1995

[9] Shynk J.J., \Adaptive IIR Filtering," IEEE Acoust.,
Speech, Signal Processing Mag., Vol.6, No.2, pp. 4-21,
April 1989


