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ABSTRACT

Techniques for automatic monitoring of faults in machinery
are being considered as a means to safely simplify or dis-
pense with expensive periodic fault inspection procedures.
This paper presents results from an ongoing investigation
into the feasibility of using Acoustic Emissions (AEs) for
automatic detection of microcrack formation/growth in ma-
chine components.

1. INTRODUCTION

Periodic inspection and/or preventive maintenance of ma-
chines are time-consuming, expensive and require substan-
tial down time. Hence, automatic fault monitoring tech-
niques have received considerable attention as an econom-
ical alternative, their feasibility being largely governed by
the technique's ability to detect the fault with reasonable
certainty.
Acoustic Emissions (AEs) are stress waves emitted by

stressed material undergoing deformation processes such as
plastic deformation or crack growth. Diagnostics based on
AEs is a passive, nondestructive evaluation (NDE) method
and is hence, an attractive option for automatic monitoring
of faults in machines. These stress waves can be detected by
piezoelectric transducers (PZT) placed strategically on the
material specimen. The characteristics of AE signals from
crack growth have been extensively studied (e.g., [1]). Most
of these studies were done for isolated material specimens
in controlled laboratory conditions at very high SNRs. In
a practical case, however, when the AE signal has to be de-
tected while the machine is in operation, the AE is buried
at very low SNRs under strong interference/noise caused by
mechanical motion in the machine. This noise is quite com-
plex and highly nonstationary, and arises due to a number
of factors that, other than vibration, may include fretting,
hydraulic noise and electromagnetic interference [2]. Most
of these noise events are transient and not quite unlike AE
signals. Hence, the task of detection is not merely lim-
ited to the detection of transient signals in white noise [4].
It also becomes important to classify these detected tran-
sient events as AE signatures or otherwise. In consequence,
the detection of crack growth signatures from the measured
data is not a trivial problem. The problem is further com-
pounded by the fact that in the case of complex material
geometries the characteristics of the AE might not be known
a priori to a large extent. Also, the noise is highly machine
and load dependent and it is not possible to fully charac-
terize it under all possible permutations of the working en-
vironment. In consequence, the question is whether, given
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a knowledge of the structure of a machine and the char-
acteristics of the noise under certain load conditions, the
partial a priori knowledge can be e�ectively used to detect
AE signals at very low SNRs with a very high probability
of detection with low false alarm rates. In this paper, we
present an approach for detecting AEs in helicopter rotor
components [3][4]. This approach can be possibly adopted,
with suitable changes, for other machinery, rotating or oth-
erwise.

2. THE NOISE/SIGNAL MODEL

Vibration data recorded from a rotor component in a heli-
copter is quite likely to exhibit some periodicity in its char-
acteristics. A major proportion of the energy of this data
is concentrated at the lower end of the spectrum, usually
less than 50 KHz [4]. AEs, on the other hand, are transient
in nature, with dominant spectral content over 100 KHz
(and possibly extending to 2-3 MHz). Therefore, a high-
pass �lter with a cuto� of 50 KHz should be used at the
preampli�cation stage before A/D conversion. Even after
this preprocessing is done, AEs are still buried under higher
frequency interference at low SNRs.

Figure 1 and 2 show typical data observed over two time
periods or cycles(one cycle corresponds to one full rotation
of the rotor). Note that the data provided by Honeywell
contained only the background noise and the �rst domi-
nant transient. The other periodic and random transients,
which are fretting and electromagnetic noise respectively,
were measured separately in our lab and added to the above
data at expected SNRs. Note also that several AEs mea-
sured during microcrack growth in Tantalum Nitride speci-
mens [3] have been added to the data shown in Figure 2 at
low SNRs. The e�cacy of our approach at detecting these
weak AEs is presented in this paper.

From Figures 1 and 2 it can be noted that the signal
contains a number of strong transient signals whose dura-
tions are much less than one cycle. We will refer to these
as transient noise. In addition to the above, \steady" lower
level noise which we will refer to as background noise, is
also present. On the basis of the time of occurence of these
transient noise events with respect to the start of the cycle
(henceforth, in this paper, time of occurence will implicitly
mean the time of occurence with respect to, or referenced
to, the start of the cycle under scrutiny), we have two cat-
egories 1) quasi-periodic transient events, (labeled as p in
Figure 1), that occur at approximately the same time in
every cycle, and, 2) aperiodic or random transient events.
Quasi-periodic transient events may arise due to frictional
rubbing (or fretting) of surfaces. Random transient events
may be caused, for example, due to electromagnetic inter-
ference or due to roller joints.

Based on the above data, a suitable model for the noise
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Figure 1. Data recorded over one cycle
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Figure 2. Data recorded over the next cycle
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Note that the time index n is referenced from the start
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AE signals related to crack growth are typically transient

in nature and tend to occur in \bursts" i.e. a temporal
sequence of multiple, possibly highly correlated events [5].
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Here, Si is the number of AE events in the i
th cycle. The

constant cij is the amplitude of the j
th AE event gij whose

amplitude has been normalised to unity.

The data (signal plus noise) measured during the ith cycle
is then given by,
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Note that thus far we have made no assumptions about
the spectral content of the noise and AE signals. However,
in the �ltering and processing of zi(n) we will make the
following assumptions :

1) The spectral content of the AE signals are concen-
trated in a few spectral coe�cients. The energy of the
background noise x(n) in these coe�cients is insigni�cant
compared to the total energy of x(n). It is assumed that
x(n) is stationary over time durations much longer than
that of the transient events.
2) Periodic noise transients, i.e., pik(n), occur at approx-

imately the same time index (referenced from start of the
cycle) at every cyle. As mentioned before, we will assume

that pik(n) is highly correlated with p
i�1
k (n).

3) AE signals are assumed to exhibit no periodicity. It
is important to note that this assumption does not imply
that AE signals cannot occur over two consecutive periods.
We merely assume that the time of occurence of the AE sig-
nals over consecutive periods are not correlated even though
there might exist a high degree of correlation between the
actual AE events over both periods. Also the characteristic
decay rates of AE signals, though widely varying depend-
ing on the characteristic of the crack and its location with
respect to the sensor, are in general, lower than that of
electromagnetic transients and much higher than that of
fretting transients. We will, therefore, exploit this a pri-
ori knowledge of the range of decay rates exhibited by AE
signals at the eigen�ltering/denoising stage [2].
4) Random transient noise events in the same cycle or

over consecutive cycles may or may not be highly correlated,
depending on the actual sources of these events.

3. THE PROPOSED APPROACH

We will now consider the processing of the data measured
during the current cycle shown in Figure 2. For the pro-
cessing, we take into account the knowledge of the charac-
teristics of the data gathered in the previous cycle (shown
in Figure 1). Figure 3 shows the block diagram of the pro-
posed approach for the above signal/noise models and as-
sumptions. The basic methodology is to reduce the given
data to a collection of transient events in white noise by
�ltering out the background noise. This is done in the pre-
�ltering stage by �tting an AR model to x(n) with blocks of
data chosen from the previous cycle, corresponding to time
intervals that do not contain any transient events. Then a
denoising of the time series is done to e�ectively pick out
the transients, some of which might be buried in the white
noise at low SNRs. The quasi-periodic transient events are
discarded, following which a simple preliminary detection is
done based on a history of the number of random transient
events observed in every cycle. If AE signals are detected
at the preliminary detector, then additional signal process-
ing is done to localize/characterize the source of the AE
signals. This would not only con�rm the decision made in
the previous stage, but also give some reasonable estimate
of the criticality of the crack.

3.1. Eigen�ltering/Denoising

The output of the pre�lter is a collection of transient events
in additive white noise. If the exact decay rate were known
then optimal data tapers that have minimal spectral leak-
age outside the frequency range (or frequency bin) of in-
terest can be found in closed form [6]. However, as men-
tioned in Section 2, we have no exact a priori knowledge
of the decay rate of the AE signals. However, a range of
decay rates that they might exhibit is known. Though, a
closed form solution for the optimal tapers does not exist
in this case, the tapers can still be computed numerically
as a generalized eigenvector problem. The set of eigenvec-
tors computed for each frequency bin are then used as the
�lter coe�cients (with time index reversed) for the bank
of �lters corresponding to that frequency bin. The output
of these eigen�lters are then combined as a weighted sum
using the corresponding eigenvalues. As shown in Figure 3,



Figure 3. Block Diagram of Proposed Approach

each of these eigen�lter banks correspond to one channel.
Using a set of these eigen�lter banks, each corresponding to
a given frequency bin of interest, decomposes the original
time series into several components.
We need to maximize the functional,
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where E(�; !) is the DFT of the tapered data. Closed form
expressions for the optimal tapers from the above equation
is not possible. But optimal tapers for di�erent frequency
bins can be obtained numerically as the solution to general-
ized eigenvalue problems by discretizing the above integral,
i.e.,
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n is the discrete time index. Note that for B the limits of
the inner summation changes to ! = 0 to ! = �.
Using a partial knowledge of the range of expected decay

rates for AE signals we numerically estimated the optimal
tapers for frequency bins of 100 KHz width at low SNRs.
Figure 4 shows a typical taper obtained for the frequency
bin 50 to 150 KHz - the frequency bin containing the AE
signals. Figure 5 shows the generalized eigenvalues that give
a measure of the spectral compactness (the energy concen-
trated in the required frequency band) of the tapers. It
can be seen that the spectral compactness drops o� rapidly
beyond a certain number of dominant tapers, correspond-
ing to the number of Rayleigh frequency spacings present
within the given frequency band of interest [6].
Figure 6 shows the output of the channel containing the

AE signals. The collection of time series' of all the channels
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Figure 4. An Optimal Taper
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Figure 5. Spectral Compactness of Tapers

can be thought of as a decomposition of the original time
series on a highly redundant frame. Several techniques have
been proposed for denoising of a time series using threshold-
ing of the frame coe�cients. We will use the soft threshold-
ing technique proposed in [7]. The threshold obtained using
the above method is depicted in Figure 6 with a dashed line.
Figure 7 shows the denoised time series of the above chan-
nel. Figure 8 is a \zoomed-in" look at the denoising of a
single AE event.
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3.2. Preliminary Detection using Count Statistics

The input to this section is a collection of denoised tran-
sients. The �rst step is to separate the random transients
from the quasi-periodic transient events that occured over
both cycles. The starting time indices of the transients are
estimated from the denoised data using simple thresholding.
A similar estimate is already available for the previous cy-
cle. Due to inherent \jitter", caused due to load imbalances
and thresholding variances, the time index of quasi-periodic
events in the two cycles will not be identical. As mentioned
in Section 2, if a stochastic model for this jitter is avail-
able then events corresponding to the same quasi-periodic
process can be identi�ed using a maximum likelihood crite-
rion. To distinguish between quasi-periodic/random events,
we form the likelihood matrix given by L = [lij ], where lij
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Figure 7. Denoised Time Series of one channel
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Figure 8. Denoising of single AE event

is the likelihood that the ith transient from the current cy-

cle and the jth transient from the previous cycle belong to
the same periodic process. For a given transient of index i

from the current cycle, maxj lij ; lij > � gives the maximum
likelihood of the index of the transient in the previous cycle
that corresponds to the same periodic process, i.e., the col-
umn that contains the maximum value along each row gives
the maximum likelihood estimate of the index. Note that
this maximum value in each row should be above a certain
threshold. If a maximum value in a row cannot be found
above the given threshold the event corresponding to that
row index is assumed to be a random occurence.

At this stage of the project, the spectral characteristics
of these random transient events are not known. Hence,
we propose a simple detection scheme using count statistics
once the quasi-periodic transient events have been sepa-
rated out. A count of the random transient events in every
cycle is done. A history of these counts over a number of cy-
cles is used to detect the occurence of AE signals. Here we
assume a simplistic case, wherein in the absence of the AE
signals, randomly occuring transient events can be modeled
as Poisson occurences governed by a rate �. The presence
of a train of AE events in a cycle can hence be detected as
nonstationarities of the underlying Poisson model [8].

Monte-Carlo simulations were done with synthetic data
generated similar to the two cycles of data discussed above.
Figure 9 shows the ROC curves obtained for various values
of k (5 to 15), where k is the number of AEs synthetically
introduced into one cycle. Note that the false-alarm rates
(FAR) in the �gure are rates/cycle, and hence, for a cycle of

1 second duration a FAR of 10�5 would be equal to about
28 hours. These ROC curves can be improved by incorpo-
rating a priori knowledge of the spectrum of the the AE
signals or the interference transient events. This prelimi-
nary detection can operate at higher than acceptable FARs,
as the source characterization/localization stage succeeding
the above will provide a further reduction in FARs.
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Figure 9. ROC curves for k=5 to 15

4. CONCLUSIONS

An approach for detecting AEs in helicopter rotor compo-
nents for automatic fault monitoring has been presented.
A suitable noise/signal model has been proposed. In these
models, care has been taken to assume minimal a priori
knowledge of the characteristics, as might well be the case
for complex component geometry and machine structure.
A simple preliminary detector using count statistics, based
on random and \burst" properties of AE events has been
proposed. Additional signal processing after this front end
detection is required to localize and characterize the source
of the AE signal. This could provide a con�rmation of the
actual occurence of a crack growth/formation and also pro-
vide an estimate of the severity of the occurence.
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