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ABSTRACT

The bispectral averaging technique is often used in or-
der to analyze signal with variable signal delay, in pres-
ence of noise. Unfortunately, as the bispectrum is time-
shift invariant, the initial phase of the signal can't be
recovered. When studying somatosensory evoked po-
tentials (neuroelectric signals) this phase is generally
the major information, especially when it characterizes
pathologies. We show that some informations about
this phase can be extracted from the averaged signal.
An attempt to include this knowledge in the magnitude
and phase recovery algorithms is made. We illustrate
the bene�ts of this approach on a simulation and a real
application leading to a details enhancement of the an-
alyzed signal.

1. INTRODUCTION

In this communication, we assume that a large number
N of realizations of a recurrent signal s(t) are observed
with a random delay and in a noisy environment. In our
application, the recurrent signal will be the somatosen-
sory evoked potentials (SEP). The random behaviour
of these realizations is assumed to be due to the ran-
dom delay and the additive noise.
Each realization xi(t) is modeled using the following
expression:

xi(t) = s(t�di)+ni(t) (i = 1 : : :N ; 0 � t � T ) (1)

where s(t) is the deterministic signal (SEP) not sym-
metrically distributed and ni(t) the background noise
EEG (elecroencephalographic) assumed to be symmet-
rically distributed without the assumption of white-
ness.
The classical technique for the deterministic signal re-
trieval is the synchronous averaging which is the best
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estimator when delays di are known. On the con-
trary, when di is a random variable whose probability
density pd is unknown, this technique is no more e�-
cient. So, the averaged signal �xN (t) de�ned by �xN (t) =
1

N

PN

i=1 xi(t) can be approximated by the following
convolution product, when N is large enough:

�xN (t) � (pd � s)(t) + �nN (t) (2)

In our application domain, the SNR (� 0dB) and the
large number of records (> 600) permits to neglect the
residual noise �nN (t) in regard to the �ltered recurrent
signal. When the probability density function (pdf) pd
of di is assumed to be gaussian or uniform, the signal
s(t) is low-pass �ltered.
Attempts to enhance the averaged signal has been pro-
posed. Some are based on deconvolution procedures
when the �lter pd is assumed to be known. To avoid
the deconvolution problems, we can make use of time
delay estimators in order to perform time alignment of
signals before the averaging process. Due to the very
low SNR and the lack of template, this approach is
limited. One recent domain where such an application
problem �nd some suitable solution is the high order
statistics domain, especially the bispectrum.
Some previous works based on the bispectrum aver-
aging has been proposed [2][4], leading to a waveform
estimation. The bispectrum being not inuenced by a
linear phase, the initial phase of the signal s(t) can-
not be recovered from the bispectrum. This informa-
tion is important for some pathologies characterizations
where the latency of the evoked potentials is the re-
quired value.
We will show that some knowledge on the signal phase
can be advantageously extracted from the averaged sig-
nal using some realistic assumptions. We will propose
an algorithm for the amplitude reconstruction based on
the real and imaginary parts of the bispectrum, using
this knowledge. We will compare its performances with



classical algorithms in simulation. The phase recon-
struction will be based on a recursive algorithm after
proving that it is well adapted to our approach. We
will �nish this communication with a real application
on SEP, where the advantages of this method will be
highlighted.

2. MATHEMATICAL DEVELOPMENT

When neglecting the residual noise, the convolution
equation (2) can be expressed in the Fourier domain
�XN (!) = Pd(!)S(!). One assumption commonly en-
countered is that the random delay is zero mean and
symmetrically distributed, i.e its Fourier transform
Pd(!) is real. Its positive and negative parts can be
distinguished in order to express �XN (!) in polar rep-
resentation. The values of ! corresponding to a strictly
positive Pd(!) are de�ned by the interval 
+, and 
�

for the strictly negative values of Pd(!). The modulus
and phase of �XN (!) is then expressed by:

j �XN (!)j = jPd(!)j:jS(!)j (3)

arg( �XN (!)) =

�
arg(S(!)) if ! 2 
+

arg(S(!)) � � if ! 2 
�
(4)

The �rst di�culty is to determine 
+. The second one
is to estimate the phase of �XN (!) when the modulus
is closed to zero.
The pdf pd of the latency, in the SEP case, is unknown.
Nevertheless, it is reasonable to model it by the normal
or uniform law. For the �rst one, the solution of �nd-
ing 
+ is obvious because Pd(!) is strictly positive, i.e

+ =]�1;+1[. For the second one, the solution is not
so obvious since Pd(!) is not strictly positive. When
pd is the rectangular function (1=2tr)r(t;�tr; tr), its
Fourier transform is Pd(!) = sinc(!tr). So, Pd(!) is
strictly positive for ! 2 � = [0; �=tr[. This interval is
only a part of 
+ but it will be su�cient in this case.
It has been shown in [1] that for the SEP, the interval
� is large in regard to the S(!) spread.
The second di�culty will be solved empirically choos-
ing a threshold equal to 5% of the �XN (!) maximum.
In the following, we will show how to include the knowl-
edge of arg(S(!)) for ! 2 � in the amplitude and phase
reconstruction using the averaged bispectrum.

3. BISPECTRAL RECONSTRUCTION:

AMPLITUDE

The use of the discrete averaged bispectrum [4] de�ned
by:

�BN (k; l) =
1

N

NX
i=1

Bi(k; l) (5)

with
Bi(k; l) = Xi(k)Xi(l)X

�

i (k + l) (6)

is justi�ed by its time shift invariance and its properties
with gaussian noise. We will use the principal region
of the bispectrum plane excepted the l = 0 axis.
The phase of �XN (!) for ! 2 � will be noted '(m) for
m 2 [0;M ], in the discrete case. The unknown spec-
trum S(!) will be de�ned in complex notation S(!) =
Sr(!) + j:Si(!). In order to clarify the development,
the residual noise in (5) will be omitted. So, we can
show that the real and imaginary part of �BN (k; l) can
be expressed by:

<[ �BN (k; l)] = Sr(k)Sr(l)Sr(k + l)F ( ; k; l) (7)

=[ �BN (k; l)] = Si(k)Si(l)Si(k + l)F (	; k; l) (8)

for 1 � k �M; 1 � l � k and k + l �M and using the
following de�nition of F :

F (	; k; l) = 1 + 	(k)	(k + l) + 	(l)	(k + l)�
	(k)	(l)
with 	(k) = ( (k))�1 = (tan('(k)))�1

(9)

The spectrum of s(t) being mainly concentrated in the
low-frequency domain, we will use a recursive technique
similar to those given in [5], using the relations:

Sr(k + 1) =
<[ �BN (k; 1)]

Sr(1)Sr(k)F ( ; k; 1)
(10)

Sr(k + 1) =
=[ �BN (k; 1)]

Si(1)Si(k)F (	; k; 1)
(11)

for 1 � k � M and with the initial values Sr(1) and
Si(1) given by:

jSr(1)j = (12)���<[ �BN (1; 1)]
3<[ �BN (3; 1)]F ( ; 2; 1)F ( ; 2; 2)

�
=
�
<[ �BN (2; 1)]<[ �BN(2; 2)]F ( ; 1; 1)

3F ( ; 3; 1)
�
j
1

6

jSi(1)j = (13)���=[ �BN (1; 1)]
3=[ �BN (3; 1)]F (	; 2; 1)F (	; 2;2)

�
=
�
=[ �BN (2; 1)]=[ �BN (2; 2)]F (	; 1; 1)

3F (	; 3; 1)
�
j
1

6

As the phase of S(1) is known, the sign of Sr(1) and
Si(1) is readily obtained.
Several estimations of Sr(k + 1) and Si(k + 1) can be
readily obtained with l = 1 � � �M=2 if M is even or
l = 1 � � � (M � 1)=2 if M is odd. These estimates are
commonly averaged in order to reduce the estimation
variance. We can show that a variance reduction can
be performed rewriting (10) and (11) in matrix form,
for the previous values of l (similar equation than (10)
and (11) are readily obtained with l di�erent than 1):

k;lVrSr(k + 1) =k;l Ur (14)

k;lVrSi(k + 1) =k;l Ui (15)



Where vectors k;lVr , k;lUr , k;lVr , k;lUi are deduced
from (7) and (8). The solutions for Sr(k+1) and Si(k+
1) can be obtained in the least-squares sense from (14)
and (15):

Ŝr(k + 1) =
k;lV

T
r :k;lUr

k;lV
T
r :k;lVr

(16)

Ŝi(k + 1) =
k;lV

T
i :k;lUi

k;lV
T
i :k;lVi

(17)

The estimated modulus of S(k + 1) is then calculated
from the real and imaginary parts previously estimated.
Using a simulation example (section 5), we have shown
that the proposed method doesn't yield to a perfor-
mances improvement in comparison to the bispectra
recursive algorithm [5] including a least-squares step as
in (16) and (17). We can conclude that the knowledge
of the phase doesn't necessary lead to an amplitude
reconstruction improvement.

4. BISPECTRAL RECONSTRUCTION:

PHASE

We are going to show that contrarily to the ampli-
tude reconstruction, the knowledge of the phase for
! 2 [0;M ] can be advantageously used in the phase
reconstruction.
Assuming that s(t) is a shifted signal, its phase '(m)
can be decomposed as following:

'(m) = �(m) +m:�l (18)

where �l is unknown. As the bispectrum is not inu-
enced by a linear phase, we will note �(m) the phase
e�ectively taken into account by the bispectrum equa-
tion [3]:

�3(k; l) = '(k) + '(l) + '(k + l) (19)

using the de�nition of '(m), (19) becomes:

�3(k; l) = �(k) + �(l) + �(k + l) (20)

where �3(k; l) = arg( �BN (k; l))mod 2�. As in the pre-
vious section, we will use a recursive method illustrated
with a �xed value l = 1 and using (19):

'(M + 1) = '(M ) + '(1)� �3(M; 1) (21)

assuming that '(m) is known for ! 2 [0;M ].
Using (18) and (20), equation (21) becomes:

'(M + 1) = �(M ) +M�l + �(1) + �l � �(M )� �(1)
+�(M + 1)

(22)
'(M + 1) = �(M + 1) + (M + 1):�l (23)

which corresponds to (18) for m = M + 1. So, the re-
cursive method can be used to recover the phase '(m)
for m =M+1 � � �K=2, with K the last sample index of
the sampled signal s(t). Such a recursion will be made
with di�erent values of l leading to di�erent estima-
tions of '(m). We will average the exponential factors
exp(j'(m)) instead of '(m) because the '(m) are only
determined up to modulo 2�.
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Figure 1: Magnitude reconstruction. True magnitude:
, using the bispectra recursive algorithm: , using

the incomplete phase knowledge: � � �, using the spectral

technique: . . .
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Figure 2: Signal reconstruction. true signal: , using

the proposed bispectral technique: , averaged signal (2):

� � �, using the bispectral technique with the averaged
signal phase: . . .



5. SIMULATION AND APPLICATION

In order to compare the di�erent approaches, we pro-
pose a simulation involving the signal shown in �gure
(2) (true signal). The standard deviation of the ran-
dom delay is 20 samples, the noise is white and gaussian
so that the SNR is 0dB, the number of realizations
is equal to 600. We have shown in �g.(1) the recon-
structed magnitude using the incomplete phase knowl-
edge (M = 15), the bispectra recursive algorithm in-
cluding the least-squares estimation, the spectral tech-
nique. The spectral technique is based on the following
property :

E jX(!)j2 = jS(!)j2 +N (!) (24)

with N (!) the power spectrum of the noise.
As in the practical case, a noise reference is available
(just before the stimuli occurence) leading to the es-
timated power spectrum N̂ (!). So an estimation of
jS(!)j is easily obtained using N̂ (!) and (24).
We can see in �g.(1) that the proposed method exhibits
a higher variance than other ones. In regards to these
results we will not make use of the proposed method
for the magnitude reconstruction in the following ap-
plication.
In �g. (2), the comparison of the di�erent results il-
lustrates the interest of the phase recovery using the
bispectrum.

The previous methods have been applied to the
somatosensory evoked potential which is a response
to a 20 mA electrical stimuli. The signal has been
recorded 40ms after the stimuli with a sampling fre-
quency equal to 3200 Hertz, the number of records N
is 600 and the SNR is approximately equal to 0dB. We
have used the bispectra recursive algorithm including
the least-squares estimation and the spectral approach
(24). Considering the constraints introduced in section
2., we �xed M = 13. In �g. (3), we can notice that
the recovered signals respect the time shift in regard to
the averaged one. As expected, the recovered signals
contain more high frequencies since the averaged sig-
nal is low-pass �ltered but the signal from the spectral
approach is less noisy.

6. CONCLUSION

The averaged signal contains some useful information.
We have shown that this information could be a part
of the phase of the recurrent signal s(t). In order to
avoid the drawbacks of the signal averaging techniques,
we have used the bispectrum averaging approach. The
di�culties of such an approach is the amplitude and
phase recovery. We have proposed an amplitude recov-
ery algorithm including the knowledge of the informa-
tion previously introduced. Unfortunately, it doesn't
lead to a performance improvement in comparison with
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Figure 3: Signal reconstruction. averaged signal : ,
using the proposed bispectral technique : , using the

spectral technique combined with the proposed phase re-

construction method: . . .

classical algorithms. Nevertheless, it doesn't mean that
the performance improvement based on this knowledge
is an impossible task. For the phase recovery issue,
this knowledge can be used with bene�ts. We have
shown that we can make use of the recursive algorithm
to recover the unknown part of the signal phase. To
illustrate the performance of such an approach, an ap-
plication example in the biomedical �eld is given. It
is clear that it leads to a details enhancement while
preserving the latency estimation of the somatosensory
evoked potential.
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