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ABSTRACT

A systematic technique for the optimal design of
phase-locked loops for synchronous networks is pre-
sented. The method is based on Kalman estimation
theory under self-similar random noise processes. This
approach is optimal for certain noise models and for
linear phase-detectors. The results are then extended
in order to maintain the minimum mean-square phase
error when the reference signal of a master-slave net-
work is lost.

1. INTRODUCTION

Network synchronization deals with the problem of
distributing time and frequency over a network of
clocks which are spread over a wide geographical area.
The goal is to synchronize the time and frequency
scales of all the clocks which belong to the network.
In this paper we concentrate on the master-slave

technique which is certainly the most widely applied[1].
In this case all the network clocks are either directly
or indirectly slaved to a network master clock.
In order to �nd the optimal design of the phase-

locked loop (PLL) we have to take into account the
properties of the noise in the reference signal and in
the Voltage Controlled Oscillator (VCO). The design
criterion is to minimize the phase mean-square error of
the VCO.
The methods found in the literature are empirical

and usually �nd the PLL parameters iteratively by
trial and error, resulting in a sub-optimum design.
Gardner [2] shows an example where additive white

noise in the reference signal and frequency 
icker noise
in the VCO are assumed. He proposes to �nd the pa-
rameters BL (noise bandwidth) and � (damping factor)
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of a second-order loop by di�erentiating the expression
of the phase error variance with respect to these pa-
rameters. As more realistic spectral densities of noise
are considered this solution becomes increasingly com-
plex.

Vanier and Têtu [3] propose to plot the VCO er-
ror spectral density for di�erent values of fn (natural
frequency) and � (damping factor), from which they
attempt to �nd the optimal parameters by trial and
error.

Wolaver [4] shows an example where additive white
noise in the reference signal and phase random-walk
noise in the VCO are considered. He then �nds the
�lter parameters by placing the poles of the closed-
loop transfer function at convenient locations. These
selections are based on design experience rather than
on well established set of rules.

In this paper, a systematic technique for the optimal
design of the phase-locked loop is presented. The key
idea is to use Kalman estimation theory and realistic
noise models[5].

One important problem associated with master-slave
networks is the possible loss of the master timing sig-
nal. In this paper we also develop a technique which
minimizes the mean-square phase error when the ref-
erence signal is lost. Its performance is then compared
to other techniques presented in the literature.

2. CLOCK ERRORS MODEL

A tractable mathematical model for the quasi-
sinusoidal output signal of an oscillator is

v(t) = v0 sin[2�f0t + �(t)] ;

where �(t) is a random process denoting phase noise
and v0 and f0 are the nominal signal amplitude and
frequency respectively.

Let us consider the following two-state model de-
scribing the clock errors [6]:
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Figure 1: Two-state model describing clock errors.
The independent white noise inputs u1 and u2 have
spectral amplitudes Sf and Sg , respectively.

The white noise spectral amplitudes Sf and Sg are
determined from the typical Allan variance parameters
for an oscillator. For a typical crystal oscillator we will
consider the following Allan variance parameters[6]:

h0 = 9:43� 10�20 seg ; h
�1 = 1:8� 10�19

h
�2 = 3:8� 10�21 seg�1

With a discretization step size 4t equal to the clock
nominal period T0:

4t = T0 =
2�

!0
= 1:25� 10�4 seg (1)

we have that the state transition matrix Fk and the
process noise covariance Qk are given by

F =

�
1 1:25� 10�4 seg
0 1

�
(2)

Q =

"
6:9394� 10�14 rad2 6:8997� 10�18 rad2

seg

6:8997� 10�18 rad2

seg
1:1039� 10�13 rad2

seg2

#

(3)

3. PLL WITH KALMAN PREDICTOR

Let us consider a master-slave network and a node
from the �rst level. The node receives the reference
signal from the master clock

A sin[!0t] + N (t) (4)

where N (t) is the additive white Gaussian noise in the
channel. Also, the node has its own local clock whose
stability can be described by the two-state model men-
tioned earlier. We assume that the local clock is imple-
mented in analog form as a voltage controlled oscillator
(VCO).
The VCO output signal is given by

sin[!0t+ C0

Z t

0

u(� )d� � �(t)]

where u(t) is the VCO control input signal in Volts, C0

is the VCO constant in rad/(volts.seg), !0 = 2�=T0 is
the oscillator nominal frequency and �(t) is the phase
error process of the oscillator. The block diagram of
the PLL to be considered is given as follows.
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Figure 2: Block diagram of the Phase-Locked Loop.
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The corresponding mathematical model is given in
Figure 3, where A is the amplitude of the received sig-
nal, C1 [1/volts] is the A/D converter constant and C2

[volts] is the D/A converter constant.
It can be shown that in order to minimize the mean

square phase error of the local clock e�(k), the blocks
characterized by C1, D(z), C2 and C(z) must behave
as a Kalman predictor[5].
As a consequence, by using Kalman's estimation the-

ory concepts and the two-state model for the clock er-
rors, we can �nd that the optimal loop �lter D(z) in
the steady state is

D(z) = G1 +
G2

1� z�1

where

G1 =
K1

T0C0C1C2

; G2 =
K24t

T0C0C1C2

and where K1 and K2 are the Kalman gains in the
steady state.
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Figure 3: Kalman predictor \hidden" in the loop.

In Figure 4 we show simulation results for the predic-
tor using the values of 4t, T0, F and Q from eqs. (1),



(2) and (3), with A = 1 Volt/rad and where R = 10�10

(Volt)2 is the observation noise variance. One can ob-
serve the good performance of the predictor from this
graph.
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Figure 4: Phase error process: A�(k) (a), Observation: A(�(k)� �̂(k=k � 1)) + n(k) (b),

Prediction: A�̂(k=k � 1) (c).

One problem associated with master-slave networks
is the possible loss of the master timing signal. This
problem can be partially corrected by designating al-
ternate master clocks or running the slave clock inde-
pendently, until the master signal can be restored. In
most cases, the latter approach requires a very accu-
rate, and therefore expensive, back-up clock at each
node. In this paper we develop an alternative tech-
nique that consists in compensating the clock error
with an \n + 1 steps" optimal predictor by using the
two-state clock errors model.
Let us consider the loss of the master timing signal

starting from k = i. For the n + 1 steps optimal pre-
diction of the phase error �̂(i+n=i�1); n = 1; 2; ::, the
phase error variance is given by

E[(x1i+n � x̂1i+n=i�1)
2] =

E[(x1i � x̂1i=i�1)
2] + (n�t)2E[(x2i � x̂2i=i�1)

2] +

+2(n�t)E[(x1i � x̂1i=i�1)(x
2
i � x̂2i=i�1)] +

+(n�t)Sf +
1

3
Sg(n�t)

3;

where we have used the components of the covariance
matrix for the prediction errors.

For the other two techniques (free run and holdover)
the phase error variances are given by

E[(x1i+n � x̂1free)
2] =

E[(x1i � x̂1i=i�1)
2] + (n�t)2E[(x2i )

2] +

+2(n�t)E[(x1i � x̂1i=i�1)(x
2
i � x̂2i=i�1)] +

+(n�t)Sf +
1

3
Sg(n�t)

3

and

E[(x1i+n � x̂1holdover )
2] =

E[(x1i � x̂1i=i�1)
2] + (n�t)2E[(x2i � x̂2i=i�1)

2] +

+2(n�t)E[(x1i � x̂1i=i�1)(x
2
i � x̂2i=i�1)] +

+(n�t)Sf +
1

3
Sg(n�t)

3 +

+n2[(K1
i�1)

2A2E[(x1i�1 � x̂1i�1=i�2)
2] +

+(K1
i�1)

2E[n2i�1]]

respectively.
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Figure 5: Reference lost after 10 months: Free run (a), Holdover (b),
n+ 1 steps optimal prediction (c)

In Figure 5 we show the results for the di�erent ap-
proaches: (a) Free run, (b) Holdover and (c) n+1 steps
optimal prediction. It is clear that by using this last
technique the phase error variance grows very slowly
with time compared to the other two methods.
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