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ABSTRACT

Adaptive �lters can be made fault tolerant by overparam-
etrization. Conditions are derived such that no deteriora-
tion is caused by the redundancy under fault-free operation
and that the deterioration caused by weight failures is min-
imized.

1. INTRODUCTION

Adaptive systems adjust their own parameters in order to
reduce a certain speci�ed error criterion. Hardware failures
usually hamper the ability to minimize the error to the
largest possible extent. By using a redundant number of
degrees of freedom (the weights), the adaptive system can
be made tolerant for hardware failures in the weights. The
system then has the desirable property that it automatically
compensates for this type of errors [1],[2],[3].

In order to perform an analysis of the behaviour of
an adaptive system in the case of overparametrization, the
adaptive �lter problem and the overparametrization prob-
lem are separated. It is assumed that an adaptive �lter has
been designed with no redundant degrees of freedom such
that a speci�ed or intended level of performance in terms of
steady-state accuracy and speed of convergence is reached.
In all adaptive �lters there is a fundamental trade-o� be-
tween the steady-state accuracy and the speed of conver-
gence. In principle, one cannot improve on this trade-o�
by overparametrization; the knowledge required to improve
this trade-o� by redundancy would immediately yield a bet-
ter performance for the non-redundant case as well. The
best we can do is to construct an overparametrized adaptive
�lter such that there is no deterioration in the performance
caused by the redundancy itself. Since it is assumed that
any weight can get stuck and that all weights have equal
probability of failure it is also of interest to consider which
condition on the overparametrization has to be imposed in
order that the deterioration is independent of which weight
gets stuck.

In our analysis we consider adaptive �lters operating
with an LMS-algorithm. The reason for this is that it is
by far the most popular adaptive mechanism by virtue of
its simplicity and its minor computational complexity. Fur-
thermore, the LMS-algorithm can be used without alter-
ation in the case of a redundant number of adaptive pa-
rameters even though there is no unique Wiener solution to
the problem.

2. SCHEME AND DEFINITIONS

Consider the (overparametrized) adaptive �lter shown in
Fig. 1. The input signal is called x(k), the output y(k), the
reference signal d(k) and the error signal e(k). The output
of the adaptive �lter is generated as a linear combination
of internal signals ui(k) according to

y(k) = w
h(k)Au(k) (1)

where h denotes Hermitian transposition, w(k) = (w0(k);
� � � ; wN�1(k))

t the weight vector (t denotes transposition),
u(k) = (u0(k); � � � ; uM�1(k))

t the vector containing the in-
ternal signals, and A is an N �M matrix (N � M). The
internal signals are generated from the signals x by linear �l-
ters having impulse responses fm(k) and it is assumed that
the impulse responses are linearly independent. If A = IM
(the M�M identity matrix) we have the usual adaptive �l-
tering case without overparametrization. The arbitrariness
of the transfers x ! un allows us to unify the analysis for
all linear regression models including the tapped-delay-line,
its extensions Laguerre and Kautz �lters, frequency domain
adaptive �lters or the more general transform domain adap-
tive �lters.
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Figure 1: The overparametrized adaptive �lter: subsystems
and signals.

For the purpose of analysis we consider the adaptive �l-
ter working in a system identi�cation setting and in a sta-
tionary environment. The reference signal d(k) is assumed
to consist of two additive parts: d(k) = ~whu(k) + n(k),
where n is a noise signal with zero mean and the signals x
and n are statistically independent. This de�nition of d(k)
implies that we make the simplifying assumption that the
unknown system is within the model set. The vector ~w is
the reference weight vector which will be referred to as the
Wiener solution.



The weights are driven by the LMS-algorithm:

w(k + 1) = w(k) + �Au(k)e
�

(k); (2)

where � denotes conjugation.

3. ANALYSIS OF THE FAULT-FREE

SITUATION

The analysis separates the adaptive �lter problem from
the overparametrization problem: we compare the over-
parametrized adaptive �lter with the situation where A =
IM .

Consider the error signal. We have

e(k) = f~wh � w(k)hAgu(k) + n(k): (3)

In view of this expression we de�ne the weight-error vector
v(k) according to

v(k) = A
h
w(k)� ~w: (4)

Note that the weight-error vector is only an M -dimensional
vector. Variations in the overparametrized N�M directions
of vector w are not meaningful.

Combining (4) and (2) leads to the equation of motion
for the weight-error vector

v(k + 1) = v(k) + �A
h
Au(k)e�(k)

= (IM � �A
h
Au(k)u

h(k))v(k)

+�Ah
Au(k)n�(k): (5)

Clearly, if AhA = IM the same equation of motion for the
weight-error vector exists in the overparametrized case as
for the case where A = IM . Since the weight-error vector
de�nes the error signal, the overparametrization in that case
has no e�ect on the behaviour of the �lter: the speed of
adaptation and the accuracy of the �nal solution are in
no way a�ected. The condition AhA = IM means that the
columns of A are orthonormal or, otherwise stated, that the
rows of A constitute a frame in anM -dimensional Euclidian
vector space with frame bounds equal to 1.

Taking AhA = IM we obtain the same �rst-order ap-
proximations [4] for the weight-error correlation matrix as
in the non-overparametrized case, i.e.,

RV + V R = �
X
k

rnn(k)E[u(n)u
h(n� k)] (6)

and for the excess-mean-squared error

� = �E[jn(k)j2]
(
M�1X
m=0

E[jum(k)j2]
)

��

2

X
k

rnn(k)E[u
h(l)u(l � k)]

where V is the weight-error correlation matrix, R is the
covariance matrix of the internal signals um, and rnn is the
autocorrelation function of the signal n(k).

Simple examples of matrices that adhere to AhA = cIM
(c > 0) are the following

� Ah = [IMU ] with U an arbitrary unitary M � M ma-
trix (e.g. the Fourier matrix [1], cosine matrix, Hadamard,
Walsh, etc.);
� A is derived from an N � N unitary matrix by deleting
some columns (e.g. the Fourier matrix [2]).

4. WEIGHT FAILURES

We now consider the case where one or more weights get
stuck: by hardware failures they cannot change their value
anymore. A weight stuck at zero can simply be accounted
for, in terms of the previous analysis, by setting the appro-
priate row of A equal to zero or, equivalently, by considering
a smaller overparametrization matrix where the appropriate
row is deleted. A weight stuck at some nonzero value can
be treated in the same way since the stuck (�xed) weight
can be incorporated (with a minus sign) in the reference
weight vector ~w. The case of partially stuck weights is not
considered here.

The previous analysis has shown that no deterioration of
the adaptive system occurs if AhA = IM . Another desirable
feature would be that the least possible deterioration in
performance occurs if one or more weights get stuck. The
extra conditions that have to be imposed on the matrix A
to attain this are considered in this section.

We start from the notion that all weights have equal
probability to fail. Furthermore, it is assumed that the co-
variance matrix Efu(k)uh(k)g = cIM where c a positive
real number. This is done not only for the sake of ease of
analysis but also in view of a strict separation of the adap-
tive �ltering problem from the overparametrization prob-
lem. We return to this issue later.

As can be seen from (5) the overparametrization matrix
determines the behaviour of the weights. If the jth weight
gets stuck, we can still use the analysis as before but have to
replace the matrix A by a matrix Bj where Bj is identical
to A but for the deletion of th jth row. Similarly, if more
weights get stuck, we have to replace A by a matrix where
the appropriate rows are deleted. In order to obtain a per-
formance as close as possible to the failure-free situation,
we require that the condition number of the matrix BhB
is as close as possible to unity. The condition number of a
matrix is de�ned as the ratio of its smallest and its largest
eigenvalue, i.e., �min=�max.

As is to be expected, there is not a single matrix A

which is optimal in the previous sense but rather there is a
whole class. This can be seen as follows. Consider the case
where Efu(k)uh(k)g = cIM . Using a unitary transforma-
tion û(k) = Uu(k) leads to a new set of internal signals with
identical properties in terms of the covariance matrix. This
implies that the matrix A can only be determined save for
a unitary transformation. Secondly, multiplying the signals
just before the weights with an arbitrary complex num-
ber with unity absolute value will not in
uence the output
and error signal (assuming that we initialize the weights by
zero). This remark holds even in the case of stuck weights.
Lastly, in view of the fact that an arbitrary weight can get
stuck, row permutations in A are permitted. This leads to
a class of optimal matrices

A = PDA0U (7)



where P is a permutation matrix, D a diagonal matrix with
unity norm entries on the diagonal, U a unitary matrix, and
A0 is in some sense a fundamental solution to the problem.

4.1. Single weight failures

If a single weight gets stuck, then the adaptation proceeds
with one degree of freedom less. We consider the eigenvalues
of Bh

j Bj and want to minimize the eigenvalue spread.
Theorem. The maximum over j of the minimal eigenvalue
of Bh

j Bj is given by 1�M=N . In that case Bh
j Bj has M�1

eigenvalues equal to 1 and one eigenvalue equal to 1�M=N ,
independent of j. Furthermore, all the rows of A have equal

norm
p
M=N .

Proof. With the de�nition Ah = (a
0
; � � � ; a

N�1
) we have

Bh
j Bj = IM � aja

h
j and thus it is clear that Bh

j Bj has

one (minimal) eigenvalue 1� ah
j
a
j
with eigenvector a

j
and

M � 1 eigenvalues equal to 1. Furthermore we have the
property M = trfAhAg = trfAAhg =

P
j
jjaj jj22. Thus

the maximum over j of the minimal eigenvalue occurs if all

frame vectors aj have equal norm jjajjj2 =
p
M=N.

Note that determining factor for the deterioration in
the case of a single weight failure is not the number of re-
dundant parameters but rather the relative degree of over-
parametrization (N �M)=M .

4.2. Several weight failures

If we have two stuck weights, say the j and kth weight, we
introduce the matrix Bjk as identical to A except for the
deletion of the j and kth row (k 6= j). For the eigenvalues of
Bh
jkBjk we �nd in a similar way as before that there areM�

2 eigenvalues equal to 1 and the remaining two eigenvalues
are equal to 1�M=N�jahkajj. In order to attain the largest
possible condition number, we require that the rows of the
matrix A are as close as possible to orthogonality. (Note
that the result that the absolute value of the inner product
of the rows determines the eigenvalues nicely agrees with
the freedom in the additional matrix D.) The geometrical
interpretation of minimizing the maximum of jahj akj is that
the hyperplanes perpendicular to the vectors de�ned by the
rows of A neatly divide theM -dimensional plane in N equal
compartments.
Theorem. If the matrix A is chosen such that AHA = IM
and jjajjj2 =

p
M=N and that maxj;k jahj akj is minimized

(j 6= k), then for each j there are at least two vectors ak
which attain this value.
Proof. The solution to the minimization problem gives an
equilibrium: in order that any vector aj cannot be given
an in�nitesimally small change such that this minimum de-
creases, this change has to lead to an increase in the ab-
solute value of the inner product with some other vector
which immediately has to become larger than the obtained
minimum.

The inner products ahkaj are all contained in the ma-

trix AAh. Since we are aiming at a `neat' division of the
the M -dimensional space, this requirement will be re
ected
in a certain structure in the matrix AAh. In view of the
expected symmetry of the solution and motivated by the
freedom given by the permutation matrix P and the ma-
trixD, it is conjectured that the fundamental `neat' division

is re
ected in the matrix C = A0A
h
0 in the form of C being

a circulant matrix. In view of the previous analysis we have
as additional constraints on C

� the matrix C is Hermitian;
� the matrix C has M eigenvalues equal to 1 and N �M
eigenvalues equal to 0;
� the diagonal of C contains entries equal to M=N ;
� all o�-diagonal entries are smaller than M=N in absolute
value;
� the largest absolute value of the o�-diagonal entries has
to be minimized.
The requirement that jahj akj (k 6= j) reaches its maximum
value for at least two values of k for each j is automatically
met in view of the circulant and Hermitian property of C.

5. CIRCULANT MATRICES

In this section we give the well-known relation between cir-
culant matrices and Fourier matrices and apply this to our
problem.
De�nition. The Fourier matrix F (N) is de�ned as the
N �N matrix having entries fF (N)gkl = expf�2�|kl=Ng
where | =

p�1 and k; l = 0; 1; 2; � � � ;N � 1.
Theorem. Given an N � N circulant matrix C then this
matrix can be written as C = F (N)�F (N)h=N , where � is
a diagonal matrix containing the eigenvalues of C.
Proof. Consider the N -points DFT of each of the rows
of C. These transforms are stacked into a matrix and
this is thus equal to CF (N). Since C contains circularly
shifted versions of the �rst row, this can be written as
CF (N) = F (N)� where � is a diagonal matrix containing
the N -points DFT of the �rst row of C. From this it fol-
lows that C = F (N)�F (N)h=N . Furthermore, we have the
well-known result that the �rst row of a circulant matrix
and the eigenvalues form a DFT-pair.
Corollary. Consider a circulant matrix C = AAh with M
eigenvalues equal to 1 and N �M eigenvalues equal to 0.
Then A can be written as A = A0U where A0 is an N �M
matrix consisting of M arbitrary rows of the scaled Fourier
matrix, i.e., F (N)=

p
N, and U is an arbitrary M�M unitary

matrix.
Proof. From the previous theorem we have

AAh = F (N)�F (N)h=N = fF (N)�=
p
NgfF (N)�=

p
Ngh

in view of the fact that �2 = �. The matrix F (N)�=
p
N

is an N �N matrix containing (N �M) columns identical
to zero. Eliminating these columns we have AAh = A0A

h
0

which can be simply extended to AAh = A0UU
hAh

0 .
It was shown that a selection of columns from a Fourier

matrix for A0 automatically meets the �rst three require-
ments from the previous section. However, the selection of
the columns must still be made in order to meet the last
two requirements.

Many choices of columns from the Fourier matrix yield
the same matrix C in terms of absolute values of the entries.
This can easily be seen from the following two examples.
1. The choice for a set of columns i1; i2; � � � ; iM gives the
same entries in C in absolute value as i1+k; i2+k; � � � ; iM+k
with k an arbitrary integer. (The addition of k has to be
interpreted in the modulo N sense.) Such a shift in the



choice of the columns can be absorbed in the matrix D.
2. The choice for a set of columns i1; i2; � � � ; iM gives the
same entries in C in absolute values as the choice N �
i1;N � i2; � � � ;N � iM in view of the fact that these two
sets of columns are each others conjugate. (For clarity, the
columns in the Fourier matrix are indexed 0; 1; � � � ;N � 1).

6. FULLY FAULT-TOLERANT DESIGNS

Another desirable feature of the overparametrization ma-
trix A would be that is fully fault-tolerant by which we
mean that N �M weights can get stuck without loss of the
its full adaptive capabilities. This implies that deleting an
arbitrary N �M rows of the matrix A must give a regular
matrix. This issue is only partially covered by the following
two Lemmas.

Lemma. Constructing the matrix A0 in the above given
way by selection ofM consecutive columns from the Fourier
matrix gives a full fault-tolerant solution.

Proof. Suppose we select the �rst M columns from an
N �N Fourier matrix to construct A0. The matrix is then
a Vandermonde matrix with no identical rows and where
the Vandermonde matrix is de�ned as0

BB@
1 �0 �20 � � � �M�1

0

1 �1 �21 � � � �M�1

1

...

1 �N�1 �2N�1 � � � �M�1

N�1

1
CCA :

After deletion of N �M columns, we still have a Vander-
monde matrix which is regular. Since we may use an arbi-
trary matrix D (see (7)) we can extend this result to the
selection of M consecutive columns from the Fourier ma-
trix.

The previous statement can be extended. The Van-
dermonde character of the matrix is retained if we do not
choose M consecutive columns, but also if we select M

columns with an equal spacing � from the Fourier matrix.
(It is assumed that M� < N .) However, in that case we do
not always have a fully fault-tolerant solution as stated in
the following.
Lemma. If N is a multiple of � then the choice of columns
from the Fourier matrix by an equal spacing of � does not
yield a fully fault-tolerant solution.

Proof. De�ne N = �L (L is an integer L � 2). We select
our the columns by an equidistant spacing equal to �, i.e.,
the columns l� + l0 with l = 0; 1; � � � ;M � 1 and l0 an
arbitrary �xed integer with 0 � l0 < �. For convenience
we take l0 = 0. The entries in the matrix A0 now become
fA0gkl = expf�2�|kl=Lg (k = 0; � � � ;N�1, l = 0; � � � ;M�
1). It is clear that the rows k and k+L are identical. Thus
if N �M weights fail but two weights with spacing L are
still functioning, the resulting M�M Vandermonde matrix
is singular.

Note that this last statement is rather week: since two
rows from the matrix A0 are identical, it does not adhere to
the last two requirements of Section 4.2. In fact, it might
even be possible that any outcome of the minimization pro-
cess which leads to A0 automatically generates fully fault-
tolerant solutions.

7. DISCUSSION

By separating the adaptive �ltering problem from the over-
parametrization problem, we have found conditions relating
the overparametrized case to the non-overparametrized one
such that
i. there is no deterioration in performance in the fault-free
situation;
ii. the deterioration caused by weight failures is minimized.
In principle, this latter remark only applies in a �rst-order
analysis of the LMS-behaviour if R is a scaled identity ma-
trix since, essentially, one has to consider the eigenvalues of
the matrices Bh

j BjR. Having a priori knowledge of R, the
�lters fi can be redesigned such that the covariance matrix
becomes the scaled identity matrix. Also, adaptive orthog-
onalization procedures can be used to obtain orthogonal
internal signals (e.g. lattice �lters, Laguerre lattice �lters
[5]). Without such procedure and without knowledge of R
the previous analysis holds as a worst-case scenario for any
R since the worst possible condition number is the product
of the condition numbers of the separate matrices.

Construction of the overparametrization matrix A was
considered. This was based on the assumption that the
fundamental solution gives rise to a circulant matrix for
A0A

h
0 . The fundamental solution is then a part of a Fourier

matrix. However, which part has to be chosen to obtain
the required optimal solution has not yet been answered.
Nonetheless, our results suggest that the choice made in
[2] is an interesting one. This is the more so since, if we
aim at fault-tolerancy for the whole system and not just
for the weights only, any additional processing to obtain
fault-tolerancy must not be error-prone itself. Fortunately,
there exist e�cient and fault-tolerant implementations of
the Fourier matrix [6],[7].
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