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ABSTRACT

Recursive estimation of parameters of linearly or harmoni-
cally frequency modulated sinusoidal signals is considered.
The algorithms simultaneously separate the measured sig-
nal to individual components and update signal parameters
using estimated phase di�erencies. The main advantages
of the proposed algorithms over standard tracking schemes
such as e. g. the adaptive notch �lter is zero asymptotic bias
(zero tracking delay) in estimating of the instantaneous fre-
quencies.

1. INTRODUCTION

Tracking of slowly varying parameters of multiple sinusoids
or cisoids (complex-valued sinusoids) in additive noise is of
great importance from both theoretical and practical points
of view. It arises in many engineering applications such as
radar, communications, control, biomedical engineering and
others.

One of the most frequently studied algorithms for solv-
ing the above problem is the adaptive notch �lter (ANF),
[2]. Other methods include \multiple frequency tracker"
(MFT), [7], an \adaptive (IIR) structure for separation,
enhancement and tracking", [3], and \hyperstable adaptive
line enhancer", [4]. Performance of these four algorithms
is compared in [8]. The algorithms can be easily modi�ed
for tracking of similar parameters of real-valued signals, see
the referencies therein.

All the algorithms mentioned above are well suited to
the case when the time evolution of sinusoidal frequencies
is either described by a random walk, or the frequencies
are piecewise constant with jump changes. In some appli-
cations, however, the sinusoidal frequencies are piecewise
linear or periodic functions of time. An example of such
application is a coherent laser radar technology for remote
sensing of vibrational characteristics of objects. In these
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cases, the frequency estimates provided by the above al-
gorithms exhibit a nonzero tracking delay, which can be
interpreted as an estimation bias. Elimination of this bias
is the main intention of this paper.

The multicomponent signal under consideration, which
is referred as the carrier in the sequel, is given as

yn =

pX
k=1

Akn + vn n = 0; 1; 2; : : : (1)

where Akn represents the k{th component at time instant
n, vn is the noise and p is the (known) number of the cisoids.
The vector

An = (A1n; : : : ; Apn)
T

(2)

is called the signal decomposition vector. In (2), the super-
script \ T " denotes transpose. In the sequel, the superscript
\ H" denotes conjugate transpose.

The k{th instantaneous angular frequency is de�ned as
the (backward) angle increment of Akn,

!kn
4

= Arg

�
Akn

Ak;n�1

�
(3)

k = 1; : : : ; p. The sequence f!kng is called the k�th mes-

sage, for easy reference. The k{th instantaneous angular
frequency rate-of-change is given as the (forward) one step
increment of !kn, or equivalently,

�kn
4

= Arg

�
Ak;n+1Ak;n�1

A2
kn

�
: (4)

One should note that the stationary carrier is given by (1)
and (3) with constant f!kng and fjAknjg, so that f�kn �
0g. The multiple linear FM signal is characterized by (1),
(3) and (4) with constant f�kng and fjAknjg. The messages
are linear functions of time in this case. Other de�nitions of
the instantaneous frequency and frequency rate-of-change
than those in (3) and (4) are also possible, [1]. Note that
the instantaneous frequencies and frequency rates in the
sense of the alternative de�nitions can be obtained by FIR
�ltering of the quantities in (3) and (4). 1

1The quantities in (3) and (4) are normalized to the sampling
rate fs = 1[Hz].



The general multiple periodic (harmonic) FM signal is
described by (1), (3) and

!kn = !ckn + �kn cos �kn (5)

where !ckn is the mean value of the k�th message and �kn

and �kn, respectively, are the amplitude and instantaneous
phase of the message. The angular frequency of the mes-
sages is given as the one-step increment of �kn,

�kn = �kn � �k;n�1 (mod2�): (6)

In the stationary case, !ckn, �kn and �kn are independent
of time. In this case, we can delete index n and write

!kn = !ck + �k cos(n�k + �k0): (7)

k = 1; : : : ; p, where �k0 is the initial phase of the k-th mes-
sage.

In Sections 2 and 3, algorithms for tracking of slowly
varying parameters of linear FM signal and of periodic FM
signal, respectively, are presented. Both algorithms are gen-
eralizations of the MFT algorithm, [7], and hence they are
denoted by acronyms MFT-L and MFT-P. The main out-
come of the algorithms is the messages, i.e. sequencies
f!̂kng. As a by-product the algorithms give estimates of
the signal decomposition vector An in (2) and of all other
parameters. Initialization of the algorithms is discussed in
Section 4 and numerical examples are presented in Section
5.

2. THE MFT-L ALGORITHM

The MFT-L algorithm, as well as MFT, proceeds at each
time instant in two steps. The �rst step is a recursive up-
date of the signal decomposition vector An and the second
step consists of recursions for instantaneous frequencies and
instantaneous frequency rates using estimated phase dif-
ferences. The algorithm contains three user-chosen design
variables, �, � and � lying in the interval (0,1).

The update formula for the vector Ân is given by the
recursive minimizer of a quadratic loss function, that is the
discounted sum of squared errors with a forgetting factor �,
cf. [11, p. 17]. For derivation of the formula it is assumed
that the other parameters (!kn and �kn) are constant and
known. The derivation itself follows similar steps as those
for the MFT, see Appendix A in [7], for further details see
[10]. The result is

Ân = F̂nÂn�1 +G
�1
n J

�
yn � J

T
F̂nÂn�1

�
(8)

Gn = J J
T
+ � F̂nGn�1 F̂

H
n (9)

where

J = (1 : : : 1)
T

(p� 1) (10)

F̂n = diag
�
e
i~!1n ; : : : ; e

i~!pn
�

(11)

Gn is an auxiliary (p� p) matrix, the symbol \diag" means
a square diagonal matrix with the shown diagonal elements,
\hats" denote estimated quantities, i =

p�1, and ~!kn is
the prediction of the k�th frequency at time instant n based
on the data up to time n� 1. In particular,

~!kn = !̂k;n�1 + �̂k;n�1: (12)

The second step consists in updating !̂kn and �̂kn using the
estimated phase di�erences, cf. the de�nitions (3) and (4),

�̂kn = ��̂k;n�1 + (1� �)Arg

"
ÂknÂk;n�2

Â2
k;n�1

#
(13)

!̂kn = �(!̂k;n�1 + �̂kn) + (1� �)Arg

�
Âkn

Âk;n�1

�
(14)

k = 1; : : : ; p. Note that the last term in (13) corresponds
to estimating �k;n�1 rather than �kn de�ned in (4). This
discrepancy is unavoidable because no estimate of Ak;n+1

is available at time instant n. An alternative formulation
of the recursions (13) and (14) is proposed, which appears
to be less sensitive to wrong phase unwrapping, [7, 10]

�̂kn = �̂k;n�1 + (1� �)Arg

"
ÂknÂk;n�2

Â2
k;n�1e

i�̂k;n�1

#
(15)

!̂kn = !̂k;n�1 + �̂kn

+(1� �)Arg

�
Âkn

Âk;n�1e
i(!̂k;n�1+�̂kn)

�
(16)

k = 1; : : : ; p. Di�erent strategies for the choice of its design
variables, �, � and �, are discussed in [10]. Note that for
f�̂kn � 0g the algorithm reduces to the MFT.

3. THE MFT-P ALGORITHM

The MFT-P algorithm employs the same decomposition An

of the carrier as the MFT-L algorithm in (8)-(9) except for
di�erent de�nition of ~!kn. This de�nition will be explored
below. Also, this algorithm utilizes three user-chosen design
variables, �, � and � lying in the interval (0,1).

Each component of the signal is characterized by a (3�
1) state vector �kn equal to

�kn = [�kn sin�kn; �kn cos �kn; !ckn]
T
: (17)

Once �̂kn has been estimated �̂kn, �̂kn and !̂kn can be com-
puted as

�̂kn =

q
�̂2kn1 + �̂2kn2 (18)

�̂kn = Arg
�
�̂kn2 + i�̂kn1

�
(19)

!̂kn = �̂kn2 + �̂kn3 (20)

where �̂kn`, ` = 1; 2; 3 are components of �̂kn.
The main idea of the algorithm is to form preliminary

estimates of the instantaneous frequencies as

!̂
prel

kn = Arg

�
Âkn

Âk;n�1

�
(21)

and �t these estimates by a sinusoid-plus-constant model
characterized by (17) using a specialized MFT algorithm.
Note that a modi�cation of the MFT algorithm for real-
valued sinusoids was proposed in [9]. In particular, esti-

mated state vectors �̂kn, k = 1; : : : ; p, are updated in par-
allel together with auxiliary 3� 3 matrices fWkng as

�̂kn = Hk;n�1�̂k;n�1



+W
�1
k;n J3

�
!̂
prel

kn
� J

T
3 Hk;n�1�̂k;n�1

�
(22)

Wkn = J3 J
T
3 + �Hk;n�1Wk;n�1H

T
k;n�1 (23)

where

Hkn =

"
cos �̂kn sin �̂kn 0
� sin �̂kn cos �̂kn 0

0 0 1

#
(24)

J3 = [0; 1; 1]
T
: (25)

Note that the structure of recursions (23), (22) is analogous
to those in (8), (9). Finally, the instantaneous frequencies
of the messages, �̂kn, are updated using the estimated angle
increments of �̂kn, cf. (19), and forgetting factor �,

�̂kn = ��̂k;n�1 + (1� �)Arg

�
�̂kn2 + i�̂kn1

�̂k;n�1;2 + i�̂k;n�1;1

�
(26)

The recursion (26) can be alternatively replaced by

�̂kn = �̂k;n�1 + (1� �)Arg

�
�̂kn2 + i�̂kn1

�̂k;n�1;2 + i�̂k;n�1;1

e
�i�̂k;n�1

�
(27)

which eventually may be less sensitive to wrong phase un-
wrapping.

The one step ahead prediction of !kn which is needed
in de�nition of F̂n in (11) is obtained as

~!kn = J
T
3 Hk;n�1�̂k;n�1 : (28)

In summary, the MFT-P algorithm is given by (8), (9),
(21){(25), (27), (28). The problem of the choice of the
design variables �, � and � still is to be investigated.

4. ALGORITHM INITIALIZATION

The proposed algorithms are not globally convergent in gen-
eral and hence a proper initialization of the algorithms is es-
sential. The initial transient of the tracking can be avoided
or minimized if the algorithms are initialized by true or es-
timated signal parameters. This is, however, not always
possible.

We propose to use the known superior global tracking
properties of the MFT algorithm and the fact that MFT is a
special case of both MFT-L and MFT-P. Thus for MFT-L it
may be wise to force �̂kn = 0 and � = 1 at the beginning of
the tracking. Similarly, MFT-P reduces to MFT for �kn = 0
and � = 1. (Note a minor technical problem with possibly
singular matrix Wkn.) A reasonable way how to initialize
the algorithm is to start by performing MFT until the mean
square prediction error decreases and then switch to MFT-
P.

In addition, in literature it is recommended for this kind
of algorithms to begin the tracking with some small value
of the forgetting factors and increase them recursively as
e.g., [11]

�n = �c�n�1 + (1� �c)�1 : (29)

Here, �n, �1 and �c are the n�th instantaneous design
variable, the desired limit design variable and a constant
that controls the speed of convergence of �n to �1, respec-
tively. The scheme (29) has been proved to shorten initial
transients of many tracking procedures considerably.

5. NUMERICAL EXAMPLES

The tracking ability of the MFT-L algorithm is demon-
strated in the following example. Noise-free data of length
N = 800 that consists of two sinusoidal components with
unit magnitudes is generated. The angular frequency of the
�rst component is piecewise constant and equal to zero for
0 < n � 600 and to one for 601 � n � 800. The second
frequency is piecewise linear, as shown in Figure 1 (dashed
line). The signal is processed by the MFT-L algorithm with
� = 0:9422, � = 0:9092 and � = 0:9782. In addition, the
�rst diagram in Figure 1 shows the result of application of
MFT with � = � = 0:9604 (dash-dotted line). The design
variables of both procedures, MFT-L and MFT, are cho-
sen in the way that the tracking ability of the procedures
are approximately the same, according to analysis of the
algorithms in [7, 10].
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Figure 1: Performance of MFT-L (the �rst three diagrams)
and performance of MFT (the �rst and the last diagram).

Both of the algorithms are initialized by aid of correct
signal parameters. Note the extra tracking delay of the
MFT algorithm at the place where the frequencies cross
each other. This delay is avoided in the MFT-L algorithm.
The lower two diagrams show the estimation in the same
scenario but with additive noise. The SNR for each cisoids
is 0dB. The third diagram shows the performance of MFT-



L, the fourth diagram is for MFT. Here, MFT has design
variables � = � = 0:8, in order to achieve visually simi-
lar tracking speed as that of MFT-L. Note the worse noise
rejection of the MFT algorithm.

Performance of the MFT-P algorithm is tested on data
of length N = 800 which consist of two sinusoidal compo-
nents with unit magnitudes, again. The angular frequencies
of both components are sinusoids-plus-constants with piece-
wise constant parameters, marked by dashed lines. The al-
gorithm is initialized by aid of correct signal parameters.
The �rst two diagrams show results for noise-free data, the
latter two diagrams for data embedded in white Gaussian
noise so that SNR is 10 dB. The design variables of MFT-P
were � = 0:7, � = 0:85 and � = 0:975. For comparison, the
last diagram exhibits performance of the MFT algorithm
with � = � = 0:9.
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Figure 2: Performance of MFT-P (the �rst three diagrams)
and performance of MFT (the last diagram).

We note that the tracking delay of MFT is a serious
di�culty of this algorithm in tracking of rapidly varying
frequencies even for relatively small forgetting factors � and
�, while MFT-P performs well in the given example even in
the case of noisy data.

6. CONCLUSIONS

Two model-based variants of the MFT in [7] have been pro-
posed, suitable for parametric adaptive estimation of linear
(MFT-L) or periodic (MFT-P) variations of the instanta-
neous frequencies of a multi-component noisy carrier. Both
variants comprise three scalar design variables for tuning
the performance trade-o� between noise rejection and track-
ing ability. Di�erent strategies for the choice of design vari-
ables for MFT-L may be found in [10].
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