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Figure 3: Evolution of MSE: Feintuch's algorithm (dashed
line), Algorithm #1 (dotted line), and Algorithm #2 (solid
line), �f = 0:05, �1 = �2 = 0:5.

where bd(i) = wT
i bui and bui = [bd(i � 1) � � � bd(i � N)

x(i) � � �x(i�M + 1)]T , respectively.
Figure 3 depicts the evolution of the MSEs for the three

adaptive �lters on these signals, where w0 = [0 0 0]T for
each algorithm. Because the unknown system is not SPR,
Feintuch's algorithm fails to estimate the output of the sys-
tem, whereas both of the proposed algorithms provide excel-
lent convergence characteristics in this case. These results

indicate that the positiveness of c(1)(i) and the strictly-

positive-real nature of Ci(e
�j!) are maintained for Algo-

rithms #1 and #2, respectively, for all time instants for
the choices of initial coe�cients and step size values. These
results also indicate that the proposed algorithms are not
restricted for use with only a subclass of possible IIR sys-
tems, such as SPR systems.
We now repeat the above experiment for an initial co-

e�cient vector of w0 = [�1 � 0:25 1]T . Figure 2 shows
the behaviors of the instantaneous squared errors for Algo-
rithms #1 and #2, in which it is seen that the behaviors
of the proposed algorithms are quite di�erent in this case.
Although Algorithm #1 provides convergence of the coe�-
cients to their optimum values, the initial condition chosen

for these experiments yields c(1)(0) < 0, and thus this adap-
tive �lter exhibits divergent behavior initially. However, the

coe�cients eventually fall into a state whereby c(1)(i) > 0,
and the algorithm becomes convergent again. Our choice
of initial coe�cients causes C0(e

�j!) for Algorithm #2 to
be non-SPR, however, and this second adaptive �lter never
recovers from its divergent condition. These results are ob-
servable even for smaller step sizes, indicating that the be-
haviors are not due to a large step size choice.

4. CONCLUSIONS

We have analyzed the robustness of two new algorithms for
unbiased adaptive FIR �ltering in the presence of zero-mean
output noises. Our results indicate that the algorithms are
locally asymptotically stable about the optimum coe�cient
solutions. However, the stabilities of the algorithms depend
on both the unknown system and the state of the adaptive
systems, and it is possible to obtain divergent behavior from
each algorithm for certain combinations of unknown sys-
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Figure 4: Evolution of e2(i) for non-zero initial coe�cient
values: Algorithm #1 (dotted line) and Algorithm #2 (solid
line), �1 = �2 = 0:05.

tems and coe�cient initializations. Our analysis method
can be used to quantify the nature of these instabilities,
allowing their e�ects to be carefully studied, and the re-
sults suggest that zero initial coe�cient values often yield
good adaptation characteristics. Simulations for a three-
parameter model indicate the accuracy of the analytical re-
sults.
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determined by

f(a1(i); a2(i)) = min
a1; a2

1 + a1a1(i) + a2a2(i)

1 + a21(i) + a22(i)
: (26)

For adaptive system parameter values that fall in Region
B of this �gure, there exist stable unknown systems that
cause divergence of the algorithm from these parameter
values. Thus, the stability of Algorithm #1 depends on
both Ai(q

�1) and A(q�1), unlike many algorithms based on
output error minimization whose stabilities only depend on
A(q�1) [8]{[12].

2.2. Algorithm #2

We now consider the algorithm in (10) for j = 2. Applying
a similar method as was used for Algorithm #1, we obtain
the following relationship:

e(i) = va(i) + e
(2)
a (i)� c

(2)(i) d(i); (27)

where va(i) and e
(2)
a (i) are as de�ned in (12){(13) and

c
(2)(i) = a

T
i (ai � a) : (28)

By manipulating the input-output equations for this �lter,
we can also obtain the relationship

d(i) =
B(q�1)[e(i)]� Bi(q

�1)[va(i)]

B(q�1)(1� Ai(q�1))�Bi(q�1)(1�A(q�1))

= Di(q
�1)(B(q�1)[e(i)]�Bi(q

�1)[va(i)]) ; (29)

where

B(q�1) =

MX
m=0

bmq
�m

; Bi(q
�1) =

MX
m=0

bm(i)q
�m(30)

Di(q
�1)

=
1

B(q�1)(1� Ai(q�1))�Bi(q�1)(1�A(q�1))
;(31)

respectively. Substituting (29) into (27) produces the rela-
tionship

e(i) =
(1 + c(2)(i)Di(q

�1) Bi(q
�1))[va(i)] + [e

(2)
a (i)]

1 + c(2)(i)Di(q�1)B(q�1)
: (32)

Using the results of [4], it can be shown from the above re-
lationships that Algorithm #2 employs a �ltered-error gra-
dient update with error path �lter Ci(q

�1) given by

Ci(q
�1
) =

1

1 + c(2)(i)Di(q�1)B(q�1)
(33)

Thus, necessary conditions for convergence of this algorithm
are (i) Ci(q

�1) is stable and (ii) Ci(e
�j!) is SPR at all

frequencies ! that are represented in the input signal x(i).
In the case where ai � a and bi � b, we �nd from the

de�nition of c(2)(i) in (28) that its value vanishes in this
case. Therefore, the stability behavior of Algorithm #2
about the optimum coe�cient solution is the same as that
of the equation error LMS adaptive IIR �lter, and the al-
gorithm is locally asymptotically stable. In addition, by
choosing a0 = 0 and b0 = 0, Algorithm #2 also behaves
initially like the equation-error-based algorithm. However,
during the transient adaptation phase, the stability of Al-
gorithm #2 is no longer guaranteed. In fact, it is possible
to choose ai and bi such that Ci(e

�j!) is not SPR for par-
ticular frequencies !, causing divergence of the algorithm
if x(i) contains energy at one or more of these frequencies.
Although other adaptive IIR �ltering algorithms based on
output error minimization also require an SPR condition,
Algorithm #2 di�ers from these other algorithms in that
the SPR condition depends on both the unknown system
and the state of the adaptive system.
In addition, the stability of Algorithm #2 also depends on

the step size �(i) chosen for the algorithm. This algorithm
is a �ltered-error algorithm, however, and the memory of
the error �lter varies according to the group delay of the
�lter Ci(q

�1). Thus, �nding su�cient conditions on �(i)

to guarantee stability of the system even when Ci(e
�j!) is

SPR is a challenging task. The issues that govern the choice
of �(i) in this case are similar to those for the delayed LMS
and �ltered-X LMS adaptive algorithms[13, 14].

3. SIMULATIONS

We now explore the accuracy of our analytical results via
simulation. In the following, we focus on the robustness of
the adaptive algorithms in (1){(2) and (3){(4); for a com-
parison of their adaptation performance with those of other
adaptive IIR �lters, the reader is referred to[1].
In these example, we generate the desired signal using

an underlying IIR model with a = [1:317 � 0:81]T and

b = [1]. It can be shown that the real part of (1�A(e�j!))
for these parameter choices becomes negative for frequen-
cies near ! = 1:0. We excite this unknown system with
the signal x(n) = sin(n) and add uncorrelated zero-mean

Gaussian noise with variance �2v = 0:0001 to the output of
this system to produce the desired response signal. Since
our results suggest a normalized step size, we choose

�(i) =
�j

ku(j)i k22
; (34)

for Algorithm #j, j = f1; 2g, where �j for each algorithm
was chosen to be small enough to provide stable behavior
whenever possible. In each case, we plot either the instan-
taneous squared error e2(i) from one simulation run or the
MSE Efe2(i)g as found from an average of one hundred sim-
ulations runs. For comparison, we also plot the evolution
of the corresponding quantities for Feintuch's algorithm,

wi+1 = wi +
�f

kbuik22 (d(i)� bd(i))bui; (35)



for j = f1; 2g, respectively. In each case, we can express
the equation error, de�ned as

e(i) = d(i)�wT
i ui (11)

in terms of the �ltered observation noise va(i) and the un-

corrupted a priori error e
(j)
a (i), de�ned as

va(i) = v(i)� a
T
vi�1 = (1�A(q�1))[v(i)] (12)

e
(j)
a (i) = �ewT

i u
(j)

i ; (13)

respectively, where

A(q�1) =

NX
n=1

anq
�n (14)

and q�1 is the delay operator.

2.1. Algorithm #1

Expressing the equation error as

e(i) = w
T
ui �w

T
u
(1)

i +w
T
u
(1)

i �w
T
i u

(1)

i +w
T
i u

(1)

i

�w
T
i ui + v(i); (15)

we �rst simplify this expression using the de�nitions in (12)-
(13) to get

e(i) =
1

c(1)(i)

�
va(i) + e

(1)
a (i)

�
; (16)

where

c
(1)(i) =

1 + aT ai

1 + aTi ai
: (17)

Secondly, by subtracting w from both sides of (10), we
can express the coe�cient updates for Algorithm #1 in
terms of the parameter error vector ewi as

ewi+1 = ewi + �(i)u
(1)

i e(i) (18)

= ewi + �
(1)(i)u

(1)

i

�
e
(1)
a (i)

�e(1)a (i) +
�(i)

�(1)(i)
e(i)

�
(19)

= ewi + �
(1)(i)u

(1)

i

�
ea(i)� v

(1)(i)
�
; (20)

where �(1)(i) is arbitrary and

v
(1)(i) =

�(i)

c(1)(i)�(1)(i)
va(i)�

�
1� �(i)

c(1)(i)�(1)(i)

�
e
(1)
a (i);(21)

respectively. For the particular choice

�
(1)(i) =

1

ku(1)i k22
; (22)

Eqn. (20) can be shown to have the following property [3, 4]:

kewi+1k22 + �(1)(i) e
(1)2
a (i)

kewik22 + �(1)(i) v(1)2(i)
= 1: (23)

kT ik = 1
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Figure 1: A time-variant lossless mapping with gain feed-
back for Alg. #1, uncorrelated noise case.

Equation (23) de�nes a lossless feedforward path mapping,
whereas (21) de�nes a feedback path mapping. The en-

tire structure is depicted in Figure 1, where T i denotes the
feedforward path mapping.
Using Figure 1 and the small gain theorem, the stability

of Algorithm #1 is guaranteed if the feedback gain of the
system is less than one in magnitude. This condition leads
to stability bounds for �(i) as given by

0 < �(i) <
2c(1)(i)

ku(1)i k22
: (24)

Since the value of c(1)(i) is critical for this condition to hold,
we now consider its form more carefully.
Note that near the optimum solution where ai � a, we

�nd from (17) that c(1)(i) � 1, and thus the stability be-
havior of Algorithm #1 locally about the optimum coe�-
cient solution is the same as that of the standard equation
error LMS adaptive �lter. Since the equation error LMS
adaptive �lter is asymptotically stable for suitably small
step size values, we can conclude that Algorithm #1 is lo-
cally asymptotically stable. Moreover, without any a priori
knowledge of the optimum coe�cient values, both a0 and
b0 are typically chosen to be zero vectors. Such a choice

yields c(1)(0) = 1, and thus the behavior of Algorithm #1
is initially the same as that of the standard equation error
LMS adaptive �lter.
The stability of Algorithm #1 is not guaranteed dur-

ing its transient adaptation phase for all unknown models.

From (24), we see that c(1)(i) > 0 is necessary for a stable
choice of �(i) to exist. This condition is equivalent to hav-

ing the vector [1 � aTi ] lie in the half-plane de�ned by the

vector [1 � aT ]. In the frequency domain, this condition
is equivalent toZ �

��

(1� Ai(e
�j!))(1�A

�(e�j!))d! > 0; (25)

where Ai(q
�1) for the adaptive system AR parameters is

de�ned similarly to (14). It can be shown that for N = 1,
all choices of a1(i) that yield a bounded-input, bounded-
output stable adaptive �lter model also satisfy (25). For
N � 2, however, the stability condition can be violated for
certain choices of fan(i)g; 1 � n � N . Figure 2 depicts

contour lines for minimal values of c(1)(i) for di�erent a1(i)
and a2(i) within the range of stable models for N = 2, as
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ABSTRACT

Recently, two simple gradient-based algorithms for
unbiased IIR system identi�cation in the presence
of zero-mean correlated output noise were derived
and shown to perform well in simulation [1]. In
this paper, we study the stability and robustness of
these two adaptive �lters, deriving strictly positive
real (SPR) conditions on the overall unknown-plus-
adaptive systems to guarantee convergence of the
coe�cients to their optimum values. Unlike other
algorithms for unbiased IIR adaptive �ltering, the
stability of each of these algorithms depends on the
initial values of the �lter coe�cients. However, near
the optimum coe�cient solutions, both algorithms
are locally-stable, irrespective of the unknown sys-
tem. Simulations verify the results of our analyses.

1. INTRODUCTION

This paper presents robustness and stability analyses of two
algorithms for adaptive IIR �lters [1]. These algorithms
minimize the equation error cost function according to a
constraint on the autoregressive parameters [2] and can pro-
vide unbiased estimates of an unknown system's coe�cients
for potentially-correlated output noises. The coe�cient up-
dates for these algorithms are:

Algorithm #1:

ai+1 = ai + �(i)e(i)

�
di�1 +

e(i) (Rvvai � pvv)

1� 2pTvvai + aTi Rvvai

�
(1)

bi+1 = bi + �(i)e(i)xi; (2)

Algorithm #2:

ai+1 = ai + �(i)e(i)

�
di�1 + d(i)

Rvvai � pvv

1� pTvvai

�
(3)

bi+1 = bi + �(i)e(i)xi; (4)

where ai = [a1(i) � � �aN (i)]T and bi = [b0(i) � � � bM�1(i)]
T

are the autoregressive and moving average coe�cient vec-
tors, xi = [x(i) � � �x(i �M + 1)]T and di = [d(i) � � �d(i �
N + 1)] are the input and desired response signal vectors,

e(i) = d(i)�aTi di�1�bTi xi is the equation error, Rvv and
pvv are the N -dimensional normalized autocorrelation ma-
trix and vector of the observation noise, and �(i) is the step
size. Both of these adaptive �lters assume that the desired
response signal is generated from an IIR �lter with param-
eter vectors a and b whose output y(i) is corrupted by an
additive zero mean observation noise signal v(i) such that

d(i) = y(i) + v(i) (5)

y(i) = a
T
yi�1 + b

T
xi: (6)

If Rvv and pvv are unknown, both can be accurately esti-
mated from signals available to the system [1]. Although
statistical analyses and simulations in [1] indicate that these
algorithms achieve unbiased parameter estimates for low-
order system identi�cation tasks, no formal analysis of the
stability behavior of these algorithms has been given. In
particular, conditions on a, b, ai, and bi to guarantee con-
vergence of the algorithms have not been presented.
In this paper, we provide robustness analyses of the two

adaptive algorithms in (1){(2) and (3){(4). Our analyses
are based on a deterministic framework that has been used
in [3] and [4] to determine strictly positive real (SPR) and
stability conditions on the unknown system and step size,
respectively, to guarantee convergence of a wide class of
gradient-based adaptive �lters. Unlike other analyses that
are statistically-based [5]{[7], our results are independent
of the statistics of the input signals. From our analysis,
we show that both Algorithms #1 and #2 are both ini-
tially stable for a0 = 0 and b0 = 0 and are locally-stable
about the optimum coe�cient solution for suitably small
step sizes and for systems that are not under-parameterized.
However, during the systems' transient phases, the adaptive
�lters can become unstable, and we quantify the nature of
this instability. Simulations verify the results of our anal-
yses and indicate the behaviors of the adaptive �lters in
di�erent situations.

2. DETERMINISTIC STABILITY ANALYSES

For brevity, we consider situations in which v(i) in (5) is
uncorrelated such that Rvv = I and pvv = 0. Our analysis,
however, can be extended to arbitrary correlated noises.
For these analyses, we de�ne the vectors w, wi, ewi, ui,

ui, and u
(j)

i , as

w =
h
a
b

i
; wi =

h
ai
bi

i
; ewi = wi �w; (7)

ui =
h
yi�1
xi

i
; ui = ui +

h
vi�1
0

i
; u

(j)

i = ui � z
(j)

i ;(8)

respectively, where vi = [v(i) � � � v(i � N + 1)]T and z
(j)

i

for j = f1; 2g is given by

z
(1)

i = �
"

e(i)

1 + aTi ai
ai

0

#
; z

(2)

i = �
h
d(i)ai
0

i
; (9)

respectively. Using these de�nitions, the two algorithms in
(1)-(2) and (3)-(4) can be expressed as

wi+1 = wi + �(i)e(i)u
(j)

i (10)


