
We now proceed to manipulate equations (9), (10) and
the lattice equations for the second stage to obtain a limit-
ing structure for the �rst stage of the normalized lattice �l-
ter, since all other stages will still have the same continuous-
time limit as the conventional normalized lattice �lter an-
alyzed in Section 2. Similar to the approach in Section 2,
we perform manipulations, similar to (1) to (3), on (9) and
(1). After some calculations, this gives

�fN (k+ 1)

sin �N(k + 1)
=

�fN�1(k+ 1)

sin �N (k+ 1) cos �N (k+ 1)

+
(K(k+ 1)� 1)

sin �N (k+ 1) cos �N (k+ 1)
�fN�1(k+ 1)

+
sin �N�1(k)

cos �N (k+ 1)
�fN�1(k)

+
(1� �2N�1(k))

sin �N�1(k) cos �N (k+ 1)
�fN�1(k)

�
cos �N�1(k)

sin �N�1(k) cos �N (k+ 1)
�fN�2(k) (14)

With the de�nition of the re
ection coe�cient in (12), it
can be shown [9] that the following limiting conditions hold

lim
�!0

sin �N (k) = (�1)(N�1)

lim
�!0

1 � sin2 �N (k)

�
= 2(�1(t)�m(t))

where m(t) is de�ned in Condition C1. Then the limit of
(14) is

��fN (t) =
1p

2�1(t)� 2m(t)

d

dt
�fN�1(t)

+

p

N�1(t)p

2�1(t)� 2m(t)
�fN�2(t)

+
m(t)p

2�1(t)� 2m(t)
�fN�1(t) (15)

Compared with (6), (15) has an additional term which is
the key in realizing an arbitrary all-pole transfer function.
A similar recursion for this stage has been seen in [4]. If one

forms the polynomial ��fN(t) similar to (8), it will be seen
that the polynomial has every derivative of �f0(t), unlike (8).
An important issue is how one goes about choosing K(k).
This has been discussed in [9].

4. STABILITY ISSUES

Time-varying and time-invariant stabilities of the modi�ed
normalized lattice �lter and the limiting continuous-time
structure have been investigated in detail in [9]. Due to
limitations of space, the results are only presented here.
The modi�ed normalized lattice �lter is represented in a
state-space representation and the following result holds.
Theorem:
The time-varying modi�ed normalized lattice �lter is

BIBO stable in the discrete-time provided that the following
holds :

K
2(k) > 1 for all k;

j sin �n(k)j < 1 for all k and n = 1; 2; � � � ;N (16)

Next, the stability of the limiting continuous-time struc-
ture is investigated. Consider the conditions

0 < �U �m(t) � �V <1; 0 < U � ��1(t) � V <1;

0 < ��U i � 
i(t) � ��V i; i = 1; 2; � � � ;N � 1; for all t:

(17)

where all U 's and V 's are constants. For time-invariant
parameters, (17) are exactly the conditions for BIBO sta-
bility of the limiting continuous-time structure. For the
time-varying case, it can be shown that (17) guarantees
Lyapunov stability of the limiting continuous-time struc-
ture which means that the zero input recursion of the time-
varying limiting continuous-time structure obtained from
the modi�ed normalized lattice �lter could never go unsta-
ble. It can be shown that condition (17) gives time-varying
BIBO stability of the second-order limiting continuous-time
structure. It is seen that conditions (16) and (17) are equiv-
alent in the light of the limiting conditions (4).
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That is, (1) is valid for n = N � 2;N � 3; � � � ; 1; 0. Thus
for the second stage, the lattice equations (1) hold with
n = N � 2. The �rst two stages of this modi�ed �lter is
shown in Figure 1.

The modi�ed normalized lattice �lter is now analyzed
in detail. For simplicity we drop the time dependence of
all time-varying parameters with the understanding that
they are all time-varying. From equations (9) and (10),
the modi�ed normalized lattice �lter is obtained in the FIR
form as

�fN(k) =
K �fN�1(k)

cos �N
+

sin �N
cos �N

�bN�1(k � 1)

�bN (k) =
�bN�1(k� 1)

K cos �N
+

sin �N
cos �N

�fN�1(k) (11)

Let �fN�1(k) and �bN�1(k) be expressed in terms of �f0(k)
and its delayed versions as

�fN�1(k) =

N�1X
i=0

�i �f0(k� i)

�bN�1(k) =

N�1X
i=0

�N�1�i �f0(k� i)

i.e. we have assumed that the coe�cients in the expressions
for �fN�1(k) and �bN�1(k) are reversed of each other. This
assumption is valid since (1) is valid for n � N�2, for which
such reversal relationship is classical [5]. Substituting the
above two equations into (11), we obtain

�fN(k) =
K
PN�1

i=0
�i �f0(k� i)

cos �N

+
sin �N

cos �N
(

N�1X
i=0

�N�1�i �f0(k� i� 1))

4
=

NX
i=0

di �f0(k� i)

�bN (k) =
sin �N

PN�1
i=0

�i �f0(k � i)

cos �N

+

PN�1
i=0

�N�1�i �f0(k � i� 1)

K cos �N

4
=

NX
i=0

d̂i �f0(k � i)

From the above equations, it is clear that the coe�cients
in the expressions for �fN(k) and �bN (k) are not reversed of
each other. In fact, the coe�cients in the expressions for
�fN(k) and �bN (k) are related as follows.

dN =
�0 sin �N

cos �N
= d̂0

d0 =
K�0

cos �N
; d̂N =

�0

K cos �N

di =
K�i + �N�i sin �N

cos �N
; d̂i =

�i sin �N +
�
N�i

K

cos �N
;

i = 1; 2; � � � ;N � 1

The re
ection coe�cient for the �rst stage is de�ned as

�N
4
=

dN

d0
=

sin �N

K
(12)

With this de�nition, the limiting conditions in Section 2
still hold. It is to be noted that �fN(k) is the optimal N -th
order forward prediction error but �bN (k) is not the optimal
N -th order backward prediction error. It can be shown
that the re
ection coe�cient �N is still given by �N =
Ef �f

N�1 (k)
�b
N�1(k�1)g

Ef �f2
N�1

(k)g .

Due to the modi�cation and the above change in the rela-
tionship between �N and sin �N , a question naturally arises
as whether the modi�ed normalized lattice �lter can real-
ize an arbitrary all-pole ( or all-zero) transfer function. We
now give below, in algorithmic form, how to realize an ar-
bitrary all-pole transfer function in the discrete-time using

this new lattice structure. Let DN (z
�1)

4
=
PN

i=0
diz

�i

and D̂N(z
�1)

4
=
PN

i=0
d̂iz

�i.
Algorithm:

Given transfer function = 1

A(z�1)
, where A(z�1) =PN

i=0
aiz

�i is arbitrary with a0 6= 0.

Initialization: Calculate DN (z
�1) by substituting

di = ai

Calculation of Re
ection Coe�cient: The re
ection coe�-
cient �N is then computed as

�N =
sin �N
K

=
aN

a0
; cos �N =

p
1� sin2 �N

Computation of D̂N (z
�1): First compute

d̂0 = dN = aN ; d̂N =
d0

K2
=

a0

K2

Next, solve the following set of equations for �i

K�i + �N�i sin �N

cos �N
= di = ai; i = 1; 2; � � � ;N � 1 (13)

We can choose K as K = 1 +m�. Then, the �i's calcu-
lated are used to compute

d̂i =
�i sin �N +

�
N�i

K

cos �N

Then form D̂N (z
�1) =

Pn

i=0
d̂iz

�i.

Once DN�1(z
�1) and D̂N�1(z

�1) have been computed,
the algorithm follows the same procedure as for the regu-
lar normalized lattice �lter as in [6]. With the de�nition

of �N in (12), DN�1(z
�1) and D̂N�1(z

�1) will have a de-

gree reduction of one from DN(z
�1) and D̂N (z

�1). Also,

the coe�cients in the polynomials Di(z
�1) and D̂i(z

�1),
for i = 1; 2; � � � ;N � 1, will be reversed of each other.
Therefore 1

A(z�1)
is realized by this modi�ed normalized

lattice �lter. It can be shown that equation (13) will have
an unique solution if

K
2
> 1; j sin �N j < 1:



This is a re-arrangement of (1) in terms of only the forward
prediction errors, which will be shown to have a continuous-
time limit shortly.
When the sampling period becomes in�nitesimal, the fol-

lowing limiting condition holds [8] :

lim
�!0

�n = (�1)n�1; lim
�!0

1� �2n
�2

= 
n; n � N � 1 (4)

where 
n is the ratio of the n-th order forward prediction
error energy to the (n�1)-th order forward prediction error
energy at t = 0 [4]. Now let us look back at equation (3).
The �rst term on the right hand side of (3) can realize
a derivative operation when the sampling period tends to
zero. In fact, from (3), using the limiting conditions (4)
with time-varying parameters, we obtain

lim
�!0

�fn+1(k+ 1) = lim
�!0

1p

n+1(k+ 1)

�
�fn(k + 1)� �fn(k)

�

+ lim
�!0


n(k)
1p

n(k)

1p

n+1(k + 1)

� �fn�1(k); n < N � 2:

Therefore,

�fn+1(t) =
1p


n+1(t)

d

dt
�fn(t)+

p

n(t)p

n+1(t)

�fn�1(t); n < N�2:

(5)
where �fn+1(t) = lim�!0

�fn+1(k). Equation (5) is similar
to Pham-LeBreton like order recursion [4],[9].
Now for the �rst stage of the normalized lattice �lter,

n = N and the limiting condition [8] is

lim
�!0

(1� �2N (k))

�
= 2�1(t);

where �1 is the �rst coe�cient of the N -th order parameter
vector � = [ 1; �1; �2; � � � ; �N ]T of the corresponding
continuous-time AR model [8]. Thus the limiting structure
for the �rst stage of the normalized lattice is

��fN (t) =
1p
2�1(t)

d

dt
�fN�1(t) +

p

N�1(t)p
2�1(t)

�fN�2(t) (6)

where ��fN (k)
4
=

�f
N
(k)p
�

and ��fN (t) = lim�!0
��fN (k). We

see from above that ��fN (k), though obtained from �fN(k) by

dividing by
p
�, has a continuous-time limit given above

as the sampling period goes to zero. The division by
p
�

arises from the transition from the discrete-time domain to
the continuous-time domain.
For the last stage of the normalized lattice �lter, the

normalized lattice recursions (1) hold with n = 0 and
�f0(k) = �b0(k). After some manipulations, using the limit-
ing conditions described above, the limiting continuous time
structure for the last stage is

�f1(t) =
1p

1(t)

d

dt
�f0(t) (7)

Combining the above, the limiting variable ��fN(t) can be
expressed in terms of �f0(t) is

��fN (t) =
1q

2�1
Q

N�1
j=1


j

[
dN

dtN
�f0(t) + (

N�1X
i=1


i)
dN�2

dtN�2
�f0(t)

+ (

N�1X
i=3


i

i�2X
j=1


j)
dN�4

dtN�4
�f0(t) + � � � � � �

+ (

N�1X
i=2M�1

i�2X
j

j�2X
k

� � �

p�2X
q=1


i
j
k � � �
p
q) �

�
dN�2M

dtN�2M
�f0(t)] (8)

where N = 2M +1 if N is odd and is equal to 2M if N is
even. Refer to [9] for details.

It is seen that the polynomial ��fN (t) realized has only
every other derivative of �f0(t). Thus there may be stabil-
ity problems if this polynomial realizes an all-pole transfer
function.

3. THE MODIFIED NORMALIZED LATTICE

FILTER AND ITS LIMIT
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N
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=
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N-1
(k+1)

N-2

Figure 1. Modi�ed normalized lattice �lter; the pa-

rameters are time-varying.

To overcome the above problem, the approach we consider
is to modify the �rst stage of the normalized lattice �lter.
Let the order recursions for the �rst stage of the modi�ed
normalized lattice �lter be

�fN�1(k) =
cos �N (k) �fN (k) + sin �N (k)�bN�1(k � 1)

K(k)
(9)

�bN (k) =
cos �N (k)�bN�1(k� 1)� sin �N (k) �fN (k)

K(k)
; (10)

where K(k) is constrained by

lim
�!0

[K(k)� 1]

�
= m(t); 0 < jm(t)j<1;

� � � � � � Condition C1

Equation (1) for the order recursions of the normalized lat-
tice �lter is used for stages 2 to N of this modi�ed �lter.



A MODIFIED NORMALIZED LATTICE ADAPTIVE FILTER FOR FAST SAMPLING

Parthapratim De 1� H. (Howard) Fan1�

1 Dept. of Electr. & Comp. Engr. & Comp. Science,
University of Cincinnati, Cincinnati, OH 45221-0030, USA

ABSTRACT

Most �lters, adaptive or not, formulated using the delay
operator, have no limit when sampling becomes fast and
therefore they will have numerical problems. We will show
that one reason that the normalized lattice �lter has less
numerical problems is because that it has a limit as the
sampling period tends to zero. The transfer function in the
s- domain obtained as a limit of the normalized lattice �lter
will, however, have only every other power in the denomina-
tor polynomial. We propose a modi�ed normalized lattice
�lter that can realize any arbitrary transfer function in the
discrete (z) domain and its order-recursive limit as the sam-
pling period tends to zero can realize any arbitrary transfer
function in the s-domain. Various stability properties of the
new lattice are also studied.

1. INTRODUCTION

As the demand arises for faster information transmission,
fast sampled processes and systems are becoming a neces-
sity. The delay operator, i.e. qx(t) = x(t + 1), based
methods often yield ill-conditioned processes and systems
for fast sampling. This has led to a recent interest in �-
operator based algorithms [1]-[2], where � = (q�1)

�
, which

converge to their corresponding continuous time counter-
parts for a small sampling period �.

In this paper, we consider the normalized lattice �lter. It
has many interesting properties such as that the structure is
inherently limited to realizing stable discrete-time transfer
functions, that the �lter is more robust to �nite precision
errors [5] and that conditions for its time-varying stability
can be established [6], [7], making it suitable for adaptive
applications. Up to date, the only work on delta lattices
and their limiting behaviour as the sampling rate increases
is [3]. In [3], the two multipiler FIR lattice is considered
and by using an alternative formulation based on the delta
operator, it is shown that the �lter converges to the un-
derlying continuous time lattice structure, as the sampling
period approaches zero. The limiting continuous time lat-
tice structure has, however, continuous \stages" along the
time axis and is not order recursive in form. Here \order"
refers to the order of di�erentiation.
In this paper, we will develop a new normalized lattice

structure which will have an order-recursive continuous-

�This work is supportedby the O�ce of Naval Research under

Grant N00014-96-1-0241.

time limit which can realize any arbitrary all-pole trans-
fer function in the usual s-domain. The limiting continu-
ous time order recursive structure obtained in this paper
is linked to a structure derived from [4]. We will investi-
gate the normalized lattice IIR �lter in this regard. The
behaviour of the �lter with a fast sampling period as well
as its limit are investigated. Stability issues, both time-
invariant and time varying, are further examined for the
discrete time �lter and the limiting continuous time struc-
ture.

2. NORMALIZED LATTICE IIR FILTER AND

ITS LIMIT

The order recursions for the normalized lattice �lter are
given by

�fn(k) = cos �n+1 �fn+1(k) + sin �n+1�bn(k � 1)

�bn+1(k) = cos �n+1�bn(k � 1)� sin �n+1 �fn+1(k); (1)

Let us now study the normalized lattice �lter as the
sampling period becomes in�nitesimal. To accommodate
time-varying situations, we now let all parameters be time-
varying. From the equation for the forward prediction er-
ror in (1) with time-varying parameters cos �n+1(k) and
�n+1(k) = sin �n+1(k), we thus have

�bn(k� 1) =
1

�n+1(k)
[ �fn(k)� cos �n+1(k) �fn+1(k)] (2)

Replacing (n + 1) by n in the equation for the backward
prediction error in (1) and using (2), after some algebraic
manipulations, we obtain

1

�n+1(k+ 1)
[ �fn(k + 1)� cos �n+1(k+ 1) �fn+1(k + 1)]

=
(1� �2n(k))

cos �n(k)

1

�n(k)
[ �fn�1(k)� cos �n(k) �fn(k)]

��n(k) �fn(k)

which gives

�fn+1(k+ 1) =
[ �fn(k+ 1) +

�
n+1(k+1)

�fn(k)

�n(k)
]

�

�
�

cos �n+1(k+ 1)
�

�n+1(k + 1)

�n(k)

(1� �2n(k))

�2

�

cos �n(k)

�
�

cos �n+1(k+ 1)
�fn�1(k) (3)


