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ABSTRACT

Symmetric �-Stable (S�S) processes are used to model
impulsive noise. Wiener �lter theory is generally not mean-
ingful in S�S environments because the expectations may
be unbounded. To develop a �lter theory for linear �nite
impulse response systems with independent identically dis-
tributed S�S inputs, we propose median orthogonality as
a linear �lter criterion, present a generalized Wiener-Hopf
solution equation, and show a necessary condition for a �l-
ter to achieve the criterion. For non-Gaussian S�S densities,
zero-forcing least-mean-square is the only well-known �lter
that satis�es the criterion, but others can easily be designed.
We present a second algorithm and simulations showing that
both converge to the generalized Wiener-Hopf solution.

1. INTRODUCTION

Conventional Wiener �lter theory describes the behavior of
adaptive �lters based upon the least squares criterion. The
Wiener-Hopf equation predicts the �nal values of the �lter
taps based upon the data statistics. The theory has many
applications such as system identi�cation, inverse modeling,
prediction, and interference cancelation. After convergence,
the variance of the �lter error signal is minimized and the
error signal is orthogonal to the input signal [1]. These
concepts are based upon L2 measurements and are therefore
only of extremely limited use when dealing with signals that
have in�nite variance.

Symmetric �-stable (S�S) processes do have in�nite vari-
ance and are very useful for modeling impulsive environ-
ments. The S�S distributions arise from varying the expo-
nent in the Gaussian characteristic function; the S�S char-
acteristic function is

'(!) = e
�
j!j�

; (1)

where 0 < � � 2. With � = 2, a Gaussian distribution
results, and, with � = 1, the distribution is Cauchy. For
other values of �, there is no closed form representation of
the density function. The dispersion, 
, is a scale para-
meter. The densities are closed under addition and scalar
multiplication. The justi�cation for modeling with stable
distributions is based upon the Generalized Central Limit
Theorem which states that if a limit exists for a sum of
Independent Identically Distributed (i.i.d.) variables, then
this limit must be a stable distribution. Many problems

have symmetry and, for these, a symmetrical distribution is
appropriate [2].
A large range of phenomena can be modeled by �-stable

theory. The �rst use was by Holtsmark, a Danish astro-
nomer, who found that gravitational �elds can 
uctuate with
an � of 1.5. A number of economic variables including stock
prices have been shown to be �-stable. Many types of noise
are �-stable such as, underwater acoustic, low-frequency at-
mospheric, phone line, and several man-made noises [2].
In this work, we create a foundation of �lter theory for

linear Finite Impulse Response (FIR) systems of S�S pro-
cesses. We start by de�ning S�S generalized linear variables
and processes, projection vectors, and median orthogonal-
ity. To provide background, several properties of projec-
tion vectors are described. We summarize the relationship
between median orthogonality and projection vectors in (8).
Median orthogonality is proposed as a criterion for a linear
�lter and two �lter algorithms are presented. The gener-
alized Wiener-Hopf (16) arises from this criterion and the
properties of projection vectors. Simulations illustrate that
the two �lter algorithms do converge to the solution given
by the generalized Wiener-Hopf equation.

2. DEFINITIONS

2.1. Median Orthogonality

We will use MO as an abbreviation for both median or-
thogonality and median orthogonal. Let u1 and u2 be two
random variables (or processes) and letMfg denote the me-
dian operator, which is similar to the expectation operator
Efg. If the median of the product is zero, notated as

Mfu1u2g = 0 (2)

then u1 and u2 are said to be MO,

u1 ?M u2: (3)

In the Gaussian case, MO reduces to the conventional de�ni-
tion of orthogonality and is synonymous with independence.
For the non-Gaussian symmetric case, independence is suf-
�cient for MO; MO is necessary (but not su�cient) for in-
dependence.

2.2. S�S Generalized Linear Variables (S�SGLVs)

& Projection Vectors

The established de�nition of a linear stable process [2] is
not broad enough to represent the statistics of a linear



FIR system with S�S inputs, so we de�ne S�S Gener-
alized Linear Variables (S�SGLVs) and processes. With
fxi; i = 0;�1;�2; :::g as set of i.i.d. S�S random variables,
a set S�SGLVs u = fumg is de�ned using

um =

1X
i=�1

�m(i)xi: (4)

Thus, the joint density of the two S�SGLVs um and un
is completely determined by the corresponding vectors �m
and �n, which will be termed projection vectors since they
determine the projection onto the space of independent ran-
dom variables.

2.3. S�S Generalized Linear Processes (S�SGLPs)

& Projection Vectors

The concept of generalized linear variables can readily be
applied to random processes. Let fXi;j ; i; j = 0;�1;�2; :::g
be a two-dimensional in�nite set of i.i.d. S�S random vari-
ables, we de�ne a set of S�S generalized linear processes
fumg with

um(i) =

1X
k=�1

1X
j=�1

�m(k; j)Xk;i�j; (5)

where �m is the projection vector for um. The set projection
vectors will represent the complete statistics of a linear FIR
system with i.i.d. S�S inputs.

3. PROPERTIES OF PROJECTION VECTORS

3.1. Addition of S�S variables

When a set of independent S�S variables with the same
characteristic exponent � are added, the distribution of the
sum is also S�S with the same exponent �. The dispersion
of the sum is obtained by summation of the individual dis-
persions. If x is an S�S random variable with 
x = 1, then
the random variable ax has a dispersion given by 
ax = jaj�.
Let fx0; x1; x2; :::xNg be set of i.i.d. S�S random variables,
the density of ax0 will be the same as the density of the sumPN

i=1
bixi i�

jaj =

 
NX
i=1

jbij
�

!1=�

: (6)

3.2. Dimensionality

The dimensionality of the projection vectors should be
viewed as the number of non-zero elements of the projec-
tion vector; these correspond to the dimensions of the i.i.d.
probability space. The fact that the notation �m(k; j) in
(5) implies a two-dimensional vector is not meaningful for
our work. To avoid this potential ambiguity and simplify
notation, we will work with S�SGLVs, and the results will
hold for S�SGLPs as well.
Apart from �, the probability density of a vector u com-

posed of S�SGLVs will be determined by the set of pro-
jection vectors. If u has only one element, the density is
merely speci�ed by the width statistic. If u has more than
one element, the joint density will be speci�ed by a set of
projection vectors, one for each element of u; each pro-
jection vector may require an in�nite number of non-zero

elements. However, in this work, we focus on linear FIR
systems which can be modeled with projection vectors of
�nite length.

3.3. Matrix Notation & Nonuniqueness

Equation (4) can be rewritten as

u = �
T
x; (7)

where the ordering of the rows of the projection matrix �
is completely arbitrary. Using the addition properties, a
variety of other manipulations may also be applied without
changing the statistics of u. In the Gaussian case, we can
always reduce the width so that � is square. Also, for �-
nite length projection vectors, equation (5) can easily be
reshaped and represented using (7).

4. MO & PROJECTION VECTORS

If two S�SGLVs (or S�SGLPs) are MO, their product must
also have an even density. By using the properties of pro-
jection vectors and other manipulations, we can show that
a simple condition upon the projection vectors corresponds
to MO. The relations are summarized by

u ?M v; uv = z ,Mfzg = 0, pz(z) = pz(�z)

, 0 =
P

1

i=�1
[�u (i)�v (i)]

<�=2>
; (8)

where the scalar signed exponential operator is given by

a
<b> = jaj

b
� sign(a): (9)

Later, this operator is applied to a matrix, where it operates
on each element individually, without changing the dimen-
sions.

5. MO & ADAPTIVE FILTERS

5.1. Adaptive Transversal Filters

Since transversal �lters (or tapped delay lines) are the most
common and easiest �lters to describe, we will focus on
them. The linear �lter equation is

ei = di �w
T
i ui (10)

where ei is the error signal. di is the desired response which
is provided to the �lter. ui is the input vector. wi is the
tap vector, and wT

i ui is the �lter output.

5.2. MO Filter Criterion

The MO criterion is that the error should be median ortho-
gonal to all elements of the input vector,

e ?MO u: (11)

This extends the criterion of conventional orthogonality
without restricting the densities of e or u. It does not ne-
cessarily de�ne a unique solution, nor does the least squares
criterion in an underdetermined system.



5.3. Tap Updates for MO

5.3.1. General Condition

To satisfy the criterion at the stability point, we can use
any odd function h(�), where h(�) has the same sign as its
argument and Efh(eu)g is �nite. When h(�) is applied to a
vector, it must operate on the elements individually, without
changing the dimensions. A tap vector update of the form

w(n+ 1) = w(n) + �h(eu); (12)

will have a stability point where e ?M u, because the integ-
ral of the even density function and the odd h(�) is su�cient
for Efh(eu)g = 0. Unfortunately, this does not show which
functions have the best convergence properties.

5.3.2. Cost Functions

The novelty is that we are not starting with a cost function
and then �nding a gradient. Instead, we de�ne a solution
criterion and �nd a type of tap update that has a stability
point at the solution. To view the tap update as a stochastic
gradient algorithm, we de�ne a cost function by the integral
of the expectation of the stepping in the limit as the step
size goes to zero. Di�erent updates with the same stability
points can often be created. In this case, the corresponding
cost functions will di�er in shape but will have the same
point (or points) of minimization.
There is a very good reason we take this novel approach

for S�S variables. A traditional cost function J would be a
function of e. Di�erentiating J with respect to w gives rise
to @e

@w
. Since @e

@w
= u which has an unde�ned mean value

for � � 1, there does not appear to be a way to create a
good algorithm from the expectation of the derivative with
respect to w.

5.3.3. Zero-Forcing least-mean-square (ZFLMS)

Zero-forcing least-mean-square, also known as the sign-
sign algorithm [2], has an update that can be written as

wi+1 = wi + �sign(uiei): (13)

This ful�lls the MO criterion.

5.3.4. Symmetric Least Mean P-norm (SLMP)

We introduce the Symmetric Least Mean P-norm (SLMP)
algorithm which also satis�es the MO criterion. The �lter
update is

wi+1 = wi + � (uiei)
<p=2>

: (14)

When � < 2, we must have p < � for a bounded update.
When p = 2, this is the well-known least-mean-square al-
gorithm, and, with p = 0, we have ZFLMS.

6. GENERALIZED WIENER-HOPF

EQUATION

For the general case, we use the S�SGLV matrix notation
(7) to represent the statistics of the �lter variables�

d

uLx1

�
=

�
(rMx1)

T

(QMxL)
T

�
[xMx1] ; (15)

where

� x is the vector of i.i.d. S�S variables,

� r is the projection vector for the desired signal d, and

� Q is the matrix of projection vectors for the �lter input
u.

Using (8), we can show that to achieve the MO criterion
(11), the �lter w must satisfy the generalized Wiener-Hopf
equation,

��
1 �(wLx1)

T
� � rT

QT

��<�=2>

Q
<�=2> = 01xL;

(16)
where 0 is an all-zero vector. This is a non-linear equation;
however, there are a few cases with a close-form solution.

6.1. Reduction to Wiener-Hopf with Gaussian

Noise

When � = 2, the signed exponential operators vanish
and (16) reduces to the standard Wiener-Hopf equation
E
�
uuT

	
w = Efdug, with the input autocorrelation

E
�
uuT

	
= QTQ and Efdug = QT r.

6.2. Solution for the Square Case

When the number of nonzero columns of Q is equal to
the number of taps plus one, the augmented matrix will
be square and the solution has a closed form, because the
exponential operations may be applied to the constants. The
solution for a square projection matrix,

�
T
(L+1)x(L+1) =

" �
r(L+1)x1

�T�
Q(L+1)xL

�T
#
; (17)

is �
1 �wT

�
=

�
rT

QT

��1 �
�
T
�<2=�>

�
0
; (18)

where � is a vector in the left nullspace of Q<�=2>. (Ob-
viously, the inverse must exist.) �0 is a constant which is
adjusted so that the leftmost element of the right-hand side
of (18) is unity.

6.3. Solution for a System Identi�cation Model

If each input uj is independent with all other uk (for j 6= k)
and each uj only overlaps d in one dimension of the i.i.d.
space, we can use the model�

d1x1
uLx1

�
=

�
(aLx1)

T (0Lx1)
T

b1x1
SLxL NLxL 0Lx1

� �
x(2L+1)x1

�
;

(19)
where S is a square diagonal matrix representing the signal
subspace in u and N is a square diagonal matrix represent-
ing the noise subspace in u. The solution is

w =
�
S
2 +N

2
�
�1
Sa; (20)

assuming the inverse exists. In the Gaussian case, S2 is
the autocorrelation of the signal in u, N2 is the autocorrel-
ation of the noise, and Efudg = Sa. As an aside, equation
(20) can be derived when the i.i.d. vector x in (19) is only
symmetric; a stable density is not required.



7. SIMULATIONS

We study the convergence of ZFLMS and SLMP to a �lter
value which satis�es the generalized Wiener-Hopf equation.
The values produced during the iterations are compared to
the numerical solution of the non-linear generalized Wiener-
Hopf equation.
Obviously, the generalized Wiener-Hopf equation cannot

be studied for all possible values. In the Gaussian case,
if M < L, we have an underdetermined system, so we re-
stricted the simulations so that M � L. We choose r and
Q as random matrices with i.i.d. Gaussian entries. Cham-
bers' algorithm is used to generate the S�S deviates [2]. For
computational expediency, we use a recursive block imple-
mentation with an adaptive step-size parameter for ZFLMS
and SLMP. This merely speeds computation; it does not
a�ect the value of the solution. We made many runs with
di�erent matrix sizes. Convergence can be very fast or very
slow. Sometimes ZFLMS is much faster than SLMP; some-
times the opposite occurs, and sometimes they step almost
identically. Misadjustment, the error after the convergence
of a stochastic gradient algorithm, is also varied.
For illustration, we choose Q to be 12x4 to give a mean-

ingful system size. Each iteration is an adjustment of w
based upon the errors in a block of 1; 000 values of u and
d. The convergence of the ZFLMS and SLMP tap vectors
toward this true solution is shown in Figure 1. The error
after 5; 000 such iterations is shown as a function of � in Fig-
ure 2. The variable step-size parameter permits a very fast
convergence in the �rst 30 steps. Allowing for a small mis-
adjustment error, these plots illustrate that the generalized
Wiener-Hopf equation does correctly predict the solution.
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Figure 1. Convergence of the tap vector to solution

of the generalized Wiener-Hopf equation at � = 0:5,
using ZFLMS (solid line) and SLMP (dotted line).

The vertical scale is the natural logarithm of the ra-

tio L2 distance to the L2 norm of the generalized

Wiener �lter. The value of this error ratio at ini-

tialization is 0.

8. CONCLUDING REMARKS

We have given a �lter theory for linear FIR systems with
i.i.d. S�S inputs. MO serves as a �lter criterion and gives
rise to a generalized version of the Wiener-Hopf equation

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−7

−6

−5

−4

−3

Alpha

Lo
g 

of
 e

rr
or

 ra
tio

Figure 2. Natural Log of the error of the tap vec-

tor after 5,000 iterations as a function of �, using

ZFLMS (solid line) and SLMP (dotted line). The

vertical scale is the natural logarithm of the ratio L2

distance to the L2 norm of the generalized Wiener

�lter.

which predicts the solution of MO �lters such as the ZFLMS
and SLMP adaptive �lters. Since we have a point of sta-
bility and �lter updates, we can de�ne corresponding cost
functions and view ZFLMS and SLMP as stocastic gradi-
ent algorithms. If a system has an input that is not S�S,
the theories in this work will not strictly hold. However,
the non-S�S inputs, even those with �nite variance, may be
modeled as S�S with the appropriate width statistics. Some
accuracy is obviously lost, but the results will generally be
useful.
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