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ABSTRACT

The maximum likelihood sequence estimator is the optimal
receiver for the inter-symbol interference (ISI) channel with
additive white noise. A receiver is demonstrated that esti-
mates sequence likelihood using a variable order Markov
model constructed from a crudely quantized training se-
quence. Receiver performance is relatively unaffected by
heavy-tailed noise that can undermine the performance of
Gaussian based algorithms such as decision feedback equal-
ization with gradient based (LMS) adaptation.

1. THE PROBLEM

We consider the problem of decoding binary symbols across
a linear ISI channel contaminated with additive white noise.
Given discrete-time observations of the channel output

rn1
def
= r1; : : : ; rn, we wish to estimate the transmitted bit

sequenceBn
1

def
= B1; : : : ; Bn whereBk 2 f+1;�1g. The

minimum probability of error solution is found by maxi-
mizing the posterior probabilityPr [Bn

1 jr
n
1 ] over possible

bit sequences. Equivalently we may maximize the joint
probabilityPr [rn1 ; B

n
1 ] =

Q1

k=n Pr
�
rk; Bk

��rk�1
1 ; Bk�1

1

�
.

This optimal solution assumes knowledge of the underlying
noise distribution and the channel’s filtering characteristics.
In many problems, neither of these are known precisely.
When the ISI is linear and the noise is Gaussian, adaptive re-
ceivers can be designed to cope with channel uncertainties.
In virtually all other situations, no universal approach to re-
ceiver design is known, and using the linear-ISI-Gaussian-
noise receiver can yieldpoor performance levels.

We have described a technique built on type-based
detection theory for receiving direct-sequence-coded bit
streams when no ISI is present under general white noise
conditions [1]. Here, we extend this type-based approach to
the ISI channel, retaining the white noise assumption. Let


be a quantizer that maps observationsrk to a finite alphabet

A so that~rk
def
= 
 [rk] 2 A. In the current work, we model

the random process(~rk; Bk) as a Markov process using the
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Figure 1: Context tree equalizer.

universalcontext treemodel described in [2] to estimate the
conditional probability lawPr

�
~rk; Bk

��~rk�1
1 ; Bk�1

1

�
from

training data. The estimated probability law is used in con-
junction with the Viterbi algorithm to find the probability
maximizing bit sequence for the incoming stream of deci-
sion statistics. Figure 1 shows the basic function of the con-
text tree equalizer after training. In [3, Section 6.6], Proakis
notes that probabilistic solutions to the ISI problem can out-
perform the decision feedback equalizer (DFE) but have,
so far, the disadvantage of being parametric and of also re-
quiring a large number of computations per received signal.
Being both non-parametric and computationally inexpen-
sive, tree-based probability estimation techniques overcome
these difficulties and offeraccess to the suggested perfor-
mance advantages.

2. DISCRETE FORMULATION OF ISI CHANNEL

The transmitted signal for sending bitsBk at rate1=T by
antipodal signaling with waveformg(t) is

s(t)
def
=
X
k

Bkg(t � kT ):

Let us assume a linear channel [impulse responseh(t)]
with additive white receiver noisew(t) that may or may
not be Gaussian. The message is received asr(t) =

w(t) +
R
s(� )h(t � � ) d� . The channel responseh(t) is

zero after timet = L. Decision statistics arise from sam-
pling the output of a filter, having impulse responsem(t),



at the symbol rate1=T .

ri
def
=

Z
r(t)m(t � iT ) dt

= wi +

iX
k=i�dL=Te

Bkhi�k (1)

wherehi�k
def
=
R R

g(� � kT )h(t� � )m(t� iT ) d� dt and

wi
def
=

R
w(t)m(t � iT ) dt. Equation (1) is the discrete

formulation of the ISI channel.
The current observationri is a random variable cor-

related with previous observations but also dependent on
bits which arenot observable. Thus,frkg alone is not
a Markov process of any order. However by assuming a
random description of the bitstream, we can form the se-
quence(rk; Bk) that admits a Markov description [4]. In
particular, assume the bitstream isqth order Markov (typ-
ically q = 0). Samplesri are sufficient statistics for the
decision problem ifm(t) = (g � h)(�t) [see, e.g., [3]].
For that choice ofm(t), the noise sampleswi are corre-
lated up to lagdL=T e and the process(rk; Bk) has Markov
order max(2dL=T e; q). However, if the matching filter
m(t) is orthogonal to itself at time shifts ofT; 2T; : : : , then
(rk; Bk) has ordermax(dL=T e; q). Although ri is real-
valued, if the densities are smooth, it is reasonable to es-
timate a Markov model for the quantized process(~rk; Bk)

that takes its value inA � f+1;�1g. See [5] for a related
approach to modeling the relationship between correlated
finite alphabet sequences.

Equation (1) describes sampling the ISI channel with
onesample per bit period. Ifp samples are taken per bit pe-
riod, we denote thejth observation of bitBi by rip+j ; j =

0 : : : p � 1. We may suppose that such observations arise
from sampling using one ofp different matched filters.

rip+j
def
=

Z
r(t)mj(t � iT ) dt; j = 0 : : : (p� 1)

= wij +
X
k

Bkhi�k;j

The processxip+j
def
= (rip+j; Bi) is a cyclo-stationary

Markov process. That is, for each fixedj, the distribution
of xn depends on a fixed number of preceding values.

In Section 4, we consider a transmitter response that is
a length-p train of square pulses with polarities defined by
a spreading sequence inf+1;�1gp. In that case, thechip-
matched filters are identical up to an integer number of chip-
duration shiftsmj(t) = m0(t� jT=p), j = 0 : : : (p � 1).

3. CONTEXT TREE

A context tree is the underlying data structure in several
methods [2, 6] for estimating the conditional probability
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Figure 2: Context tree source. Figure a) shows the suffix
tree representation of a context setS = faa; ba; ca; b; cg
defined over the alphabetA = fa; b; cg. For the context
tree a), the number of defining parameters isjSj(jAj�1) =

5 � (3 � 1) = 10 whereas the equivalent Markov source
has 18 parameters. Histograms located at tree leaves are
the conditional distributionsofxn+1 where the conditioning
sequence,xn xn�1, is represented by the path that leads to
the leaf.

mass function of a finite alphabet Markov process based on
an observedtraining sequence. A context tree source, Fig-
ure 2a, is an alternate representation for a Markov source,
Figure 2b. The probability mass function for a symbol,
xn+1, resides on the tree leaf specified by the recent history
or contextof the process:xn; xn�1; : : : . The context tree
source has fewer defining parameters because, where possi-
ble, contexts that provide no useful distinction are merged.

Estimating a context tree source, or training, consists of
counting the number of occurrences in the training sequence
of all possible subsequences of length less-than or equal to
some maximum orderD. Counts are arranged in a tree as
in Figure 3, analogous to the trees in Figure 2. The second
stage of training consists of examining the accumulated tree
and, in the approach of Weinberger et al. [2] selecting a par-
ticular best tree by context merging, or, in the approach of
Willems et al. [6] assigning probability by a convex com-
bination of contributions from all possible subtree shapes
of depth less-than or equal toD. The two approaches are
calledpruningandweightingrespectively. The computation
required to estimate the probability of a lengthn sequence
using either method isO (nD) [7], or O (D) per received
signal. We have shown the true Markov order is propor-
tional to the duration of the channel responseL and there-
fore the technique is on par with decision feedback equal-
ization that requires a number of filter taps (hence com-
putation) also proportional toL. For the cyclo-stationary



D= 3

Figure 3: Context tree data structure. The context tree
serves as a data structure into which we may accumulate
counts of all transitions present in a sequence up to a cho-
sen orderD. The raw statistics are counts of the occurrence
of lettera preceded by contexts wheres is a string of letters
of length less-than or equal toD.

Markov process we estimate one context tree for each delay
valuej = 0; : : : ; p� 1.

4. SIMULATION

Figure 4 shows the modulation scheme and ISI channel
that is the focus of our study. We compare the perfor-
mance of the context tree equalizer with an adaptive deci-
sion feedback equalizer (designed assuming Gaussian noise
and linear ISI) in the presence of additive white noise with
three different marginal distributions and over a range of
SNR/bit values from�1 dB to +9 dB. The marginal distri-
butions were Gaussian, Laplacian, and 99% Gaussian + 1%
Cauchy. The spreading sequence is a 31 chip Gold code
(0x04B3E375). The ISI channel filter is a first order re-
cursive filter with time constant equal to 5 chips. When
training occurs, each detector uses the same 500 bit training
sequence. Twenty different training sequences were used at
each SNR level. A different number of test bits were simu-
lated at each SNR level to attain approximately the same co-
efficient of variation in the probabilityestimates (CV� 0:3):
The number ranged between 380 test bits at SNR=�1 dB
and 22,920 test bits at SNR=+9 dB.

The decision feedback equalizer consists of a 72-tap
feedforward section to match and whiten the incoming chip
sequence and a 3-tap feedback section to cancel the ISI of
the last three bits. Filter coefficients are adjusted by the
LMS algorithm to minimize residual errors of the filter in
(soft) bit prediction( bBi �Bi)

2. Bit decisions are sign(bBi).
For the context tree, observationsrip+j are first mapped

to a six letter alphabet~rip+j 2 A = f0; 1; 2; 3;4; 5g by
a scalar quantizer. A new quantizer is calculated at each
SNR level based on the empirical cumulative distribution
of the data from 250 bits so as to place 1/6 of the data in
each bin. For training, each quantized observation is paired
with the current bit valuexip+j = (~rip+j; Bi) and accumu-
lated into thejth context tree. A 16-state Viterbi algorithm

uses estimated probabilitycPr hxip
(i�1)p+1

���x(i�1)p

(i�4)p+1

i
as its

path metric, evaluating that quantity once foreachsurvivor
path in its maximum likelihood search strategy. Note that
in xip

(i�1)p+1
andx(i�1)p

(i�4)p+1
the observations~rip

(i�1)p+1
and

~r
(i�1)p

(i�4)p+1
remain fixed while the Viterbi algorithm specifies

bit combinationsBi andBi�1
i�4 corresponding to different

survivor paths. See Figure 1. In practice we use context tree
pruning [2] to provide probability estimates to the Viterbi
algorithm because the weighting method of [6] does not
generalize well to large alphabets. Neither the context tree
nor the DFE were operated with decision feedback train-
ing/adaptation.

Results of the simulation are shown in Figure 5. In
Gaussian noise the CTE is competitive with the DFE, re-
quiring approximately one more dB of SNR to achieve the
same probability of error performance. However in heavy-
tailed noise, the CTE appears to have equal or better perfor-
mance.

Execution times for the CTE using pruning is approx-
imately 130 times that of the DFE. Both detectors are
implemented in a combination of interpreted and compiled
Matlab code (m-files and mex-files). It is unclear whether
the discrepancy would remain in an optimized implementa-
tion. The CTE is easily parallelized by providing a separate
process for each of thep context trees that comprise the
cyclo-stationary context tree. That approach would reduce
the CTE execution time to130=31 � 4:2 times that of the
DFE.

5. DISCUSSION

Although the choice of the scalar quantizer is somewhat
arbitrary, we emphasize that the CTE is “model-free” and
therefore able to adapt to interference situations beyond the
scope of the underlying assumptions in the design of the
LMS-trained DFE algorithm. The lack of robustness in the
DFE algorithm, clearly demonstrated by the failure of the
DFE to accommodatenon-Gaussian noise environments, is
evident by its performance sensitivity to noise distribution.
Our algorithm’s robustness does not pay a large computa-
tional cost: The calculation effort required by the context
tree equalizer is of the same order as the DFE.

The current implementation uses context tree pruning
and based on the training size (500) and alphabet size
(6�2 = 12), the algorithm [2] does not allow depth greater
than 3 chips. In our simulations, the channel response is
non-zero for about three time-constants or 15 chips. The
DFE thus had a natural advantage in this simulation because
its feedforward section was of sufficient length to accommo-
date the channel response. Ideally, the tree methods would
be able to incorporatea priori knowledge of the channel in
the same way that the number of filter taps in a DFE reflects
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Figure 4: Intersymbol interference channel. We consider antipodal signaling with�1 valued signature sequences over a
first-order linear ISI channel with additive noise. Lengthp = 4 spreading code is shown for clarity; simulations usep = 31.

The sampling filter is a simple boxcar integrator over the chip periodTc
def
= T=p.

CTE    

DFE    

matched

0 5 10

Laplacian     

SNR [dB]
0 5 10

Cauchy mixture

0 5 10
10

−4

10
−3

10
−2

10
−1

10
0

Gaussian      

pr
ob

ab
ili

ty
 o

f e
rr

or

Figure 5: Simulation results. The first panel compares the
performance of the context tree equalizer to an adaptive de-
cision feedback equalizer and to the optimal detector in the
presence of additive white Gaussian noise. At the same
probability of error, the context tree equalizer requires ap-
proximately one dB more SNR/bit. However, in Laplacian
noise (middle panel), performance is comparable. The third
panel shows performance in the presence of additive white
mixture noise that is 99% Gaussian and 1% Cauchy. The
adaptive DFE is not robust to the heavy-tailed noise.

the designer’s prior knowledge. That may be possible using
the weighting methods described in [7], but only if they are
combined with CTW algorithms that have low redundancy
for large alphabets (results in [6] hold only forjAj = 2).
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