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ABSTRACT

A technique is presented for subband adaptive �ltering with
nonuniform �lter banks. The bandwidth allocations of the
subband analysis and synthesis �lters are adapted to the
spectral characteristics of the input data in such a manner
as to minimize an objective function built from the subband
error powers. The nonuniform �lter bank structure allows
for fast convergence times for high order systems with a re-
duced mean square error relative to the uniform subband
scheme. Results are presented for the case of a nonstation-
ary system with time-varying spectral characteristics.

1. INTRODUCTION

The use of �lter banks to decompose high order adaptive
�lters into several lower order parallel �lters has attracted
attention in the last several years. This process, depicted in
Figure 1, allows fast convergence relative to the fullband �l-
tering scheme and is computationally e�cient when imple-
mented in a parallel fashion. The chief drawback to the sub-
band scheme is that the overall mean square error (MSE) is
often several orders of magnitude higher than that achieved
by the fullband system.

Figure 1. Subband adaptive �ltering con�guration
for system-identi�cation.
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This excess MSE is a result of the large eigenvalue spread
in the subband input correlation matrices. The decimation
process creates spectral nulls in the input power spectral
density. These nulls are related to small eigenvalues in the
subband correlation matrices through the asymptotic equiv-
alence of a wide sense stationary processes' correlation ma-
trix eigenvalues and its power spectral density [2],[8]. The
decimation rate is chosen to be small enough to avoid the
necessity of adaptive cross �lters as described in [3].
The need for robust system identi�cation algorithms for

high order time-varying systems leads naturally to the idea
of nonuniform �lter banks for subband processing. A dis-
advantage of the uniform architecture is that the spectral
properties of the system are not exploited in the subband
partitioning. Areas of the spectrum with small variations,
i.e. easily modeled, are often split when one subband �l-
ter could model them with small error power. Similarly,
complicated regions such as band edges or highly varying
sections can be better modeled with multiple �lters acting
on smaller bandwidths. The options then are to employ a
high number of analysis/synthesis �lters to trap these com-
plicated regions in tight subbands or to shape the �lter bank
in such a way as to isolate complicated regions and allocate
large bandwidths to relatively simple regions. The former
generally leads to a more resource intensive system while
the latter can allow improved performance for a smaller in-
crease in system resource expenditure. Such a system allows
a trade-o� between the desirable MSE properties of the full-
band system and the computational complexity savings and
adaptation speed of the uniform subband system.
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Figure 2. Example of nonuniform �lter bank design
for �ve subbands formed from 20 constituent �lters
with the allocation l=[2 6 3 5 4].



In [1] we presented an algorithm was presented for build-
ing a nonuniform �lter bank to match the unknown sys-
tem's spectral characteristics. The �lter bank is adaptively
evolved and hence can track the spectrum of a time varying
system. In this paper, the details of the algorithm will be
presented and experimental results for such a nonstationary
system identi�cation will be explored as well as those of two
stationary systems.

2. A NONUNIFORM FILTER BANK
ALLOCATION ALGORITHM

The bandwidth allocation incorporates rate/distortion the-
ory in the �lter bank design. It has been shown [4] that
under certain conditions a nonuniform �lter bank can be
built by selectively merging component �lters from a uni-
form design. If the component �lters were designed properly
the overall nonuniform �lter bank retains the near perfect
reconstruction property (NPR) . This guarantees that ad-
jacent subbands have aliasing cancellation and the subband
�lters have in general a high degree of stopband rejection.
Figure 2 shows an example of a �ve subband nonuniform
�lter bank formed from twenty constituent �lters.
In the case of a paraunitary design, we know that the

reconstructed MSE is the sum of the subband error powers
and we may set up a cost function as in [3]. This is given
as a function of the bandwidth allocations, l, as

J(l) =

M�1X

I=0

�i (1)

were the subband error power for the i
th band is denoted

by �i = jjei(k)jj
2. In the case of NPR �lter banks we will

still use this modi�ed cost function but with the under-
standing that the equality in (1) is only approximate and is
dependent on the quality of the �lter bank design (a tech-
nique for designing high quality NPR uniform �lter banks
is presented in [7]). Application of the geometric-arithmetic
mean inequality yields the result that J(l) is minimized
when the subband MSEs are forced to be equal.

1. Design uniform NPR �lter bank with K subbands.

2. Choose initial allocation to build nonuniform �lter bank
with M � K subbands. Denote this allocation by l =
fl0; l1; :::; lM�1g.

3. Perform subband adaptation on next block of data. Es-

timate � = f�0; �1; :::; �M�1g and � =
PM�1

I=0
�i.

4. Find fjg such that j�
j
� �j > std(�).

5. If jfjgj = 0 go to step 2.

6. Find i = argmaxi2fjg;l
i
>a

min

j�
j
� �j. Set a =

argmaxa>aminf�i�1; �i+1g and
b = argminb<amaxf�i�1; �i+1g.

7. If �i > �, if a = ; set fjg = fjg � i and go to step

6, else li = li � 1; lb = lb + 1. If �i < �, if b = ; set
fjg = fjg�i and go to step 6, else li = li+1; la = la�1.

8. Go to step 3.

Figure 3. Bandwidth Allocation algorithm.

The bandwidth partitioning algorithm is shown in �g-
ure 3. The subband MSEs, �k, for an initial allocation are

computed and used to determine the next partition. The
bands in which the MSE falls more than a standard devi-
ation from the mean are �rst determined. The indices of
the subbands for which this condition is met are stored in
fjg and the distance of each �k : k 2 fjg from the mean, in
the order of decreasing distance. For each i,1 � i � jfjgj,

if �i > � and the current allocation for subband i is greater
then the maximum allowable then a constituent �lter is re-
moved from the allocation and is added to the allocation
of the adjacent subband with the smallest MSE with an

allocation smaller than the maximum allowable. If �i < �

the partitioning works in the other direction. As soon as
there has been a successful allocation change the search is
terminated and another block of data is processed. If all
of the members of fjg are searched without meeting the
conditions the partition remains unchanged.
The limits on the size of each allocation are enforced in

order to allow a constant decimation rate which avoids alias-
ing in any of the subbands. If the lower limits were removed
the system can act to "reduce rank" by e�ectively remov-
ing one of the components of the �lter bank. In all the
simulations presented in this paper there were forty con-
stituent �lters acting on 5 subbands with allocation limits
of 4 and 12 and a decimation rate of 3/4. The �lter bank
was implemented through cosine modulation as described
in [6].

3. EXPERIMENTAL RESULTS

3.1. Stationary Systems

Figures 4-5 show simulation results for two di�erent un-
known systems. The nonuniform system is compared
with a uniform subband �ltering setup (also using cosine-
modulated NPR �lters) and a fullband system. In each case
it can be seen that the nonuniform system exhibits lower
overall error power than the uniform allocation scheme with
a faster convergence rate than the fullband adaptive �lter.
The bandwidth allocations are plotted in �gure 6. Each
system and model used 512 FIR coe�cients and the input
in each case was unit variance white noise. The normalized
least-mean squares (NLMS) algorithm [5] was used to build
the subband models. The initial allocations were chosen by
running the nonuniform structure with all 40 constituent
�lters for one data block and using the subband MSEs to
heuristically form a nonuniform allocation.. In practice this
process could be replaced by the incorporation of some a
priori knowledge of the system structure or simply a uni-
form initial allocation. The allocation convergence for each
system is shown in �gure 6.

3.2. Time-Varying System

Figure 7 demonstrates the convergence of the nonuniform
algorithm with a slowly time-varying system. The system
was varied from a bandpass to a bandstop �lter in a linear
fashion. It is clear that the performance advantages of the
nonuniform system are not a�ected by this choice of a non-
stationary system. The adaptation speed advantage that
both of the subband systems have over the fullband �lter
can be seen at the beginning of the �rst data block.

4. CONCLUSIONS

An algorithm has been presented to allocate bandwidths to
a nonuniform �lter bank in such a way as to reduce the
overall MSE. The performance of this system has been pre-
sented for two stationary systems and for a time-varying
system. It is apparent that the performance of this system
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Figure 4. Filters and squared error for fullband,
uniform, and nonuniform subband systems model-
ing a bandstop system .

is superior in terms of overall reconstructed error power to
that of a uniform �lter bank designed in the same manner
(DCT, near perfect reconstruction, etc.) It has been argued
that this architecture allows greater freedom in trading o�
MSE and computational complexity than uniform subband
�ltering. This increase in exibility comes about through
the choice of the minimum and maximum allocation size
in the spectrum partitioning and the choice of the decima-
tion rate. The question of the algorithm convergence versus
the initial allocation is still an open question which will be
discussed in future work.

REFERENCES

[1] M. McCloud and D. Etter, \A Technique for Nonuni-
form Subband Adaptive Filtering with Varying Band-
width Filter Banks," presented at 30th Asilomar Con-
ference on Signals, Systems, and Computers, Paci�c
Grove, CA, Nov. 1996.

[2] P. DeLeon and D. Etter, \Acoustic echo cancellation us-
ing subband adaptive �lters," in Subband and Wavelet
Transforms: Design and Applications, edited by Ali
Akansu and Mark J. T. Smith. Kluwer Academic Pub-
lishers. 1995.

[3] A. Gilliore and M. Vetterli, \Adaptive �ltering in sub-
bands with critical sampling: Analysis, experiments and
applications to acoustic echo cancellation," IEEE Trans.
Signal Processing, vol. 40, pp. 1862-1875, Aug. 1992.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

0 1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

0 1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

0 1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

time blocks

Figure 5. Filters and squared error for fullband,
uniform, and nonuniform subband systems model-
ing a sampled room impulse response system.

[4] J. Lee and B. Lee, \A design of nonuniform cosine mod-
ulated �lter banks," IEEE Trans. Circuits Syst. vol. 42,
no. 11, pp. 732-737, 1995.

[5] S. Haykin, Adaptive Filter Theory, Upper Saddle River,
NJ: Prentice Hall, 1996.

[6] P. Vaidyanathan, Multirate Systems and Filter Banks,
EngleWoods Cli�s, NJ: Prentice Hall, 1993.

[7] T. Nquyen, \Near-perfect-reconstruction pseudo-QMF
banks,' IEEE Trans. Signal Processing, vol. 42, pp.65-
76, Jan. 1994.

[8] R. Gray, \On the Asymptotic Eigenvalue Distribution
of Toeplitz Matrices," IEEE Trans. Information Theory,
vol. IT-18, no. 6, pp.725-730, 1972.



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

al
lo

ca
tio

n,
 f/

f_
n

time blocks

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

al
lo

ca
tio

n,
 f/

f_
n

time blocks

Figure 6. Allocation paths for a)bandstop system
and b)echo response.
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Figure 7. Final models and squared error for full-
band, uniform, and nonuniform subband systems
modeling a time varying system.


