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ABSTRACT

The stability of variable stepsize LMS (VSLMS) algo-

rithms with uncorrelated stationary Gaussian data is

studied. It is found that when the stepsize is deter-

mined by the past data, the boundedness of the step-

size by the usual stability condition of �xed stepsize

LMS is su�cient for the stability of VSLMS. When the

stepsize is also related to the current data, the above

constraint is no longer su�cient. Instead, both the up-

perbound and the lowerbound of the stepsize must be

within a smaller region. An exact expression of the

stability region is developed for single tap �lter. The

results are veri�ed by computer simulations.

1. INTRODUCTION

There is a lot of interest recently in variable step-size

least mean square (VSLMS) algorithms [1, 2, 3, 4]. The

idea is to adjust the step size in a data dependent man-

ner so as to improve the learning and tracking abil-

ity. Generally, the approach is to devise step size rules

which give large steps when the estimated error is large

and small steps when the error is small, thereby avoid-

ing the tradeo� between convergence rate and misad-

justment for �xed step size LMS. Of course, gradient

algorithms (even those which perform line searches) are

inferior to Newton algorithms for quadratic cost, and

LMS is inferior to RLS (in terms of convergence rate for

�xed misadjustment) on ill conditioned data with large

eigenvalue spread in the input autocorrelation matrix.

However, for many nonstationary data models, LMS is

comparable to RLS (in terms of steady state tracking

error). Signi�cantly, in su�ciently noisy environment

experiments show that properly designed VSLMS can

approach RLS convergence rate and even exceed RLS

tracking ability. Furthermore, the VSLMS have lower

complexity and improved robustness (e.g., no divisions
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are required) than even the best designed fast least

squares algorithms. These features of VSLMS suggest

an important role for increasing performance in prob-

lems where fast tracking is required.

The weight updates in many of the VSLMS algo-

rithms described in the literature take the following

form:

w(k + 1) = w(k) + �kekx(k); k = 0; 1; : : :

where �k is the random step size and x(k) is the data

vector and ek is the error signal. Let

X(k) = fx(k); : : : ; x(0)g and
E(k) = fek; : : : ; e0g

denote the data vectors and errors, respectively up until

time k. The step size �k in the literature is typically

computed in one of two ways: (i) �k depends on X(k�
1), E(k � 1), i.e., on the past data and errors; and (ii)

�k depends onX(k), E(k), i.e., on the current and past

data and errors. Furthermore, a bound is enforced on

�k to ensure stability (presumably): � � �k � �.

The analysis of these VSLMS algorithms in the lit-

erature proceeds in two steps [2, 3]. First, a rigor-

ous analysis of the mean square (MS) weight and MSE

boundedness is made (or claimed), and second, an ap-

proximate analysis of the weight mean and covariance

and MSE convergence is made and the steady state

behavior is characterized (misadjustment, tracking er-

ror, etc.). The argument is made that at least one can

guarantee stability (MS weight and MSE boundedness)

rigorously, lending credence to the approximate analy-

sis. Now for uncorrelated stationary Gaussian data and

constant step size � it is known that a necessary and

su�cient condition for MS weight and MSE bounded-

ness is that [5]

0 � � < �� � 2

3TrfRg
where R = Efx(k)xT (k)g (the exact value of �� is de-
termined by the eigenvalues of R; see [5, Eqn. (30)]).



For the same data model but now with variable step

size �k, it is tacitly assumed that a su�cient condition

for MS weight and MSE boundedness is that

0 � � � �k � � <
2

3TrfRg : (1)

This assumption is straightforwardly correct if �k is

deterministic, but the usual case is where the �k is

data-dependent. One wonders, for example, if the gap

between � and � plays a role in stability for such ran-

dom step sizes.

In this paper we give necessary and su�cient condi-

tions for the stability (MS weight and MSE bounded-

ness) of VSLMS with uncorrelated stationary Gaussian

data for a single tap �lter. The key result is that Eq.

(1) is a su�cient condition for MS weight and MSE

boundedness if the step size is determined by the past

data and error signals, but is not a su�cient condition

if it additionally depends on the current data and error

signal. We present an example of unstable behavior in

the latter case when Eq. (1) is satis�ed. The extension

of these results to multiple tap �lters will appear else-

where (the results are similiar to the single tap case

except that only bounds on the stability region can

be evaluated). This work is a fundamental generaliza-

tion of the results in [5] for stability of �xed step size

LMS algorithms, and is important for rigorously estab-

lishing (at least under strong classical assumptions on

the data) the stability of a class of adaptive algorithms

which are of increasing interest in practical applica-

tions. It complements the approximate analysis of the

VSLMS in [2, 3] which was shown to have value for the

prediction of steady state behavior.

2. THE MAIN RESULT

Consider the single tap VSLMS algorithm

w(k + 1) = w(k) + �kekx(k)

ek = (w� �w(k))x(k) + nk

for k = 0; 1; : : :. We shall make the independence and

Gaussian assumptions as in [5], namely x(k) is white

Gaussian with mean 0 and variance �2x, nk is white

Gaussian with mean 0 and variance �2n, and fx(k)g,
fnkg are independent.

De�ne the MSE stability region

S = f(�; �) : sup
k

Efe2kg <1 for all f�kg

such that � � �k � � w.p. 1g:

We note that we can replace Efe2
k
g by Efw2(k)g and

get the same set S, at least if �k depends at most on

X(k), E(k) (if �k depends on the future values of x(i),

ei, i > k, this is not true in general). From [5] for the

�xed step size case �k = � it is known that the MSE

is bounded if and only if 0 � � < �� = 2

3�2
x

. It follows

that S � f(�; �) : 0 � � � � < ��g. Now de�ne the

lower envelope of the MSE stability region

�(�) = inff� : (�; �) 2 Sg; 0 � � < ��;

(�(�) is well-de�ned since (�; �) 2 S). Observe that

� if 0 � � < �� and �(�) < �, then Efe2
k
g is

bounded for all f�kg such that � � �k � � w.p.

1.

� if 0 � � < �� and � < �(�), then Efe2
k
g is

unbounded for some f�kg such that � � �k � �

w.p. 1.

We have the following two results

Case 1. If �k depends on X(k � 1), E(k � 1), then

S = f(�; �) : 0 � � � � < ��g:

Case 2. If �k depends on X(k), E(k), then

S = f(�; �) : 0 � � � � < ��; �(�; �) < 1g:

where

�(�; �) = 1� 2��2x + 3�2�4x

+ 4�2
x(�� �)�1

�
1

2p�2x

�

� 4�4
x(�

2 � �2)�2

�
1

2p�2
x

�

�i(x) =
2p
�

Z
x

0

t2ie�t
2

dt

and p = (� + �)=2 (the �i, i � 1, can be expressed

in terms of the probability integral �0). Furthermore,

if �(�; �) � 1 then an example which has unbounded

MSE is

�k =

�
� if px2(k) > 1

� if px2(k) < 1
: (2)

2.1. An Example

In Fig. 1 we plot the the lower envelope of the stability

region (the region lies above the envelope and below

the line � = �) for random step size which depend on

current and past data and error (Case 2 above). Here

�2x = 1 and consequently �� = 2=3. We compare this

result with simulation of VSLMS for w� = 1, �2n = 0:01,

and the step size given in Eq. (2). We set � to 1

3

so that from Fig. 1 the smallest value of � for MSE



boundedness is about 0.016. In Figs. 2 and 3 we show

the MSE learning curve (averaged over 100 trials) for

VSLMS with � = 0:0032 and � = 0:08, respectively.

We also show the MSE learning curve of LMS with

� = 1

3
. The MSE of VSLMS in Fig. 2 appears to

diverge, while that in Fig. 3 appears to be bounded, in

accord with the theory.
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Figure 1: Stability region of random stepsize LMS.
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Figure 2: MSE learning curves for VSLMS with � =

0:0032 and � = 1

3
and LMS with � = 1

3
.
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Figure 3: MSE learning curves for VSLMS with � =

0:08 and � = 1

3
and LMS with � = 1

3
.


