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ABSTRACT

Only a few time series methods are applicable to sig-

nal trend analysis under real-time conditions. The use

of orthogonal polynomials for least-squares approxima-

tions on discrete data turned out to be very e�cient

for providing estimators in the time domain. A poly-

nomial extrapolation considering signal trends in a cer-

tain time window is obtainable even for high sampling

rates. The presented method can be used as a predic-

tion algorithm, e.g. in threshold monitoring systems,

or as a trend correction possibility preparing the anal-

ysis of the remaining signal. In the theoretical deriva-

tion, the recursive computation of orthogonal polyno-

mials allows the development of these fast algorithms

for least-squares approximations in moving time win-

dows.

1. INTRODUCTION

It is well-known that the orthogonal sequence of Dis-

crete Chebyshev Polynomials can be used for equally

weighted least-squares approximation on discrete data

sampled with uniform separation [1, 2]. With the def-

initions (Pn(R;R) is the vectorspace of polynomials

with degree less or equal n)

�; T : Pn(R;R)! Pn(R;R);

�f(x) := f(x + 1) � f(x) (di�erence operator),

Tf(x) := f(x + 1) (shift operator) and

q : R! R; q(x) := x(x�m� 1);

the n-th Discrete Chebyshev Polynomial qn (with lead-

ing coe�cient 1) can be represented as

qn(x) =
n!

(2n)!
�n

0
@n�1Y

j=0

T�jq(x)

1
A

=
n!

(2n)!
�n

�
�(x+ 1)�(x�m)

�(x+ 1� n) �(x�m � n)

�

for n � m, where � is the gamma function andm+1 the

number of samples used for the approximation [1, 3].

These orthogonal polynomials ful�ll the three-term re-

currence relation

qi+1(x) =
�
x�

m

2

�
qi(x)� �i qi�1(x)

for i = 1; : : : ; n� 1, where q0(x) = 1; q1(x) = x� m

2

and �i :=
i2 ((m + 1)2 � i2)

4 (4 i2 � 1)
with i � 1 [3].

With Sm : Pn(R;R)! R; Sm(p) :=
mP
j=0

p(j), an inner

product h� j �i for the vectorspace Pn(R;R) is de�ned

by

hp j qi := Sm(pq) =

mX
j=0

p(j)q(j):

The least-squares approximation with a polynomial of

degree n for the data vector (y0; y1; : : : ; ym) is then

given by

p =

nX
i=0

mP
j=0

yj qi(j)

Sm(q
2
i
)

qi:

In real-time applications, which process a stream of

continuously arriving data, it is often useful that a

polynomial p approximating the last m + 1 values is

computed after each receipt of a new value. This means

that a processing in moving time windows is required.

The orthogonal polynomials qi and the norming factors

1=Sm(q
2
i
) are independent of the data to be approxi-

mated; therefore they can be calculated once and for

all, provided that m and n remain �xed. The straight

forward computation of
mP
j=0

yj qi(j), however, is time

consuming, especially if m is large, which is the case in

several applications.

More speci�c, let y0; : : : ; yt; yt+1; : : : ; yt+m; yt+m+1; : : :

be the measuring data; then the polynomials approxi-

mating the data (yt; : : : ; yt+m) and (yt+1; : : : ; yt+m+1)

respectively are given by

pt(x) =

nX
i=0

�i;t

Sm(q
2
i
)
qi(x) and



pt+1(x) =

nX
i=0

�i;t+1

Sm(q
2
i
)
qi(x)

with �i;s :=
mP
j=0

ys+j qi(j); i = 0; : : : ; n, provided that

the origin of the coordinate systemmoves together with

the considered time window.

It is the purpose of this paper to develop a quick up-

date algorithm from �i;t to �i;t+1 independent of the

approximation length m. This allows the implementa-

tion of a moving least-squares approximation for real-

time applications using polynomial estimators by anal-

ogy with a moving average.

2. LEAST-SQUARES APPROXIMATION IN

MOVING TIME WINDOWS

Since (q0; : : : ; qi) is a basis of Pi(R;R); T qi can be writ-

ten as Tqi =
iP

l=0



(i)

l
ql with some 


(i)

l
2 R. Since qi and

Tqi have leading coe�cient 1, this equation leads to

T�1qi � qi = �
i�1P
l=0



(i)

l
T�1ql. Given these coe�cients,

it is possible to prove the following assertion:

Theorem 1: For i = 0; : : : ; n the values �i;t+1 can be

represented as

�i;t+1 = �i;t+yt+m+1 qi(m+1)�yt qi(0)�
i�1P
l=0



(i)

l
�l;t+1

with
�1P
l=0



(0)

l
�l;t+1 := 0 and 


(i)

l
as above.

Proof: For i = 0; : : : ; n the following is valid:

�i;t+1 =

mX
j=0

yt+1+j qi(j)

=

m+1X
j=1

yt+j qi(j) +

m+1X
j=1

yt+j
�
T�1qi(j) � qi(j)

�
= �i;t + yt+m+1 qi(m + 1)� yt qi(0) +

m+1X
j=1

yt+j

 
�

i�1X
l=0



(i)

l
T�1ql(j)

!

= �i;t + yt+m+1 qi(m + 1)� yt qi(0)�

i�1X
l=0



(i)

l
�l;t+1:

With these formulas it is possible to compute �i;t+1

iteratively starting from i = 0 with a �xed number of

arithmetic operations independent of m.

It remains to determine the coe�cients 

(i)

l
.

Theorem 2: Let q
�1 := 0; 


(i)

�1 := 0 and 

(i)

j
:=

0 for j > i � �1; then 

(0)

0 = 1 and for i = 0; : : : ; n�1

and l = 0; : : : ; i+ 1 the recursive relation



(i+1)

l
= 


(i)

l�1 + �l+1

(i)

l+1 + 

(i)

l
� �i


(i�1)

l

holds with �i de�ned as above.

Proof: 

(0)

0 = 1 follows from q0 = 1 = Tq0. Mul-

tiple use of the recurrence relation for the orthogonal

polynomials allows the transformations

i+1X
l=0



(i+1)

l
ql = Tqi+1 = T (x�

m

2
)Tqi � �iTqi�1

= (x+ 1�
m

2
)

iX
l=0



(i)
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(i�1)
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iX
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m

2
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iX
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iX
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iX
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(i)

l
ql � �i

i�1X
l=0
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ql
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(i)
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(i)
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(i)

l
� �i


(i�1)

l
)ql:

The assertion follows by comparison of the respective

coe�cients.

For polynomials with small degree, it is possible to de-

rive formulas for the direct computation of 

(i)

l
.

Corollary 1: The following equations for 

(i)

i�s
hold

provided that i � s for each s:



(i)

i�k
=

�
i

k

�
for 0 � k � 2;



(i)

i�3 =

�
i

3

�
+ 2

i�2X
j=1

�j � (i � 2)�i�1;



(i)

i�4 =

�
i

4

�
+ (2 i� 3)

i�3X
j=1

�j �

�
i � 2

2

�
(�i�2 + �i�1);



(i)

i�5 =

�
i

5

�
+ (i� 2)2

i�4X
j=1

�j �

�
i � 2

3

�
(�i�3 + �i�2 +

�i�1) + 2

i�4X
j=1

�j

0
@j+1X

k=1

�k �

i�1X
k=j+2

�k

1
A+ (i � 4)�i�3�i�1:

This can be proven by induction using the recursive

computation formula of theorem 2.



Altogether these results provide a possibility to com-

pute polynomial approximations e�ciently for given

degree n (usually � 3 in practice) and approximation

length m. For processing in moving time windows with

small m (� n + 2) a direct computation of �i;t taking

advantage of the symmetry of qi is preferable. In other

cases, if m is large, costs of (n+ 1)(n+ 4)=2 additions

and less than n(n + 5)=2 multiplications result from

theorem 1 for one update step from pt to pt+1 assum-

ing that the data independent values qi(0); qi(m + 1)

and 

(i)

l
were computed in advance.

�0;t+1 = �0;t + yt+m+1 � yt

�1;t+1 = �1;t + (1 +
m

2
)yt+m+1 +

m

2
yt � �0;t+1

�2;t+1 = �2;t +
m2 + 5m + 6

6
yt+m+1 �

m2 �m

6
yt

�2�1;t+1 � �0;t+1

�3;t+1 = �3;t +
m3 + 9m2 + 26m+ 24

20
yt+m+1 +

m3 � 3m2 + 2m

20
yt �

3�2;t+1 � 3�1;t+1 �
m2 + 2m + 12

10
�0;t+1

Table 1: Explicit update formulas

Therefore the number of arithmetic operations required

for one update step depends on the degree of the ap-

proximating polynomial only. This means that the de-

veloped algorithm is especially suitable for approxima-

tions in large time windows. Table 1 shows the explicit

computation of the �rst few �i;t+1.

If the approximation length m may change during a

real-time application, the computation of qi(m+1) and

qi(0) in advance is impossible. The following simpli�-

cation avoids the evaluation of the orthogonal poly-

nomials during the update step: since the coe�cients

�i;j of qi(x) =
iP

j=0

�i;jx
j are known, qi(0) = �i;0 and

qi(m + 1) = (�1)iqi(�1) = (�1)i
iP

j=0

(�1)j�i;j holds

due to symmetry reasons.

3. APPLICATIONS

In general, the new method may be used to �gure out

threshold crossings in real-time considering polynomial

trends in the signal. The least-squares approximation

smoothes the signal and the essential behaviour of the

signal (ascent or descent and their intensity) is con-

tained in the approximating polynomial. By evaluating

this polynomial a short period in the future (extrapo-

lation), it is possible to predict the signal behaviour.

Furthermore a polynomial trend correction for a sig-

nal is possible as a signal preprocessing step with each

receipt of a new value. This avoids e.g. misinterpreta-

tions of low frequencies due to long-term signal trends

in a subsequent fourier analysis of the remaining signal.

3.1. Tool monitoring systems

A typical application for checking a threshold cross-

ing is a very important and time critical aspect of

monitoring a CNC-lathe, namely the collision detec-

tion based on measured force signals. For this purpose

we have implemented the described method on a Dig-

ital Signal Processor TMS320C31 (Texas Instuments,

32-bit 
oating-point arithmetic). Using a polynomial

of degree 2 approximating the last 64 values at a time

we have shown that the reaction time for detecting a

threshold crossing in the case of a collision could be

signi�cantly reduced compared to moving average algo-

rithms; this could have been achieved without a wors-

ening of the false alarm behaviour. Besides the origi-

nal cutting force signal �gure 1 shows the continuously

computed extrapolation values of the moving polyno-

mial approximation together with two di�erent moving

averages.

Besides the collision detection, the moment of the �rst

contact between the cutting tool and the workpiece

may also be controlled by the described method: the

value �1;t, which represents mostly the ascent behav-

iour of a signal, is a reasonable indicator for the mo-

ment of the �rst contact.

3.2. General implementation aspects

Several aspects had to be considered for a thorough and

e�cient implementation. The parameters �i;t, which

can be computed in place due to the formula in theo-

rem 1, were set to 0 initially thus avoiding a time con-

suming computation for the �rst approximating poly-

nomial. The high sampling rates (e.g. up to 10 kHz in

the monitoring systems) together with long monitoring

intervals require a careful analysis of possible rounding

errors due to the iterative computation of �i;t. Round-

ing problems may already arise while computing the

moving average �0;t due to the addition of the rela-

tively small yt+k to the previous value of �0;t. Thus

an increasing rounding error may be propagated to

the remaining �i;t with i > 0 causing additional trou-

ble. These numerical problems can be avoided on the

DSP by using either a 40-bit addition algorithm (which

needs about 70 (50) processor cycles for the update step
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Figure 1: Threshold crossing detection

from �i;t to �i;t+1 for a polynomial of degree 3 (2)) or

by implementing an analogue of the Kahan-Babu�ska-

summation [4]. This summation method is generally

suitable for the 
oating-point addition of small num-

bers to already big sums. Table 2 shows as an example

pseudo code for an improved computation of �0;t.

S := 0; �s := 0;

LOOP over t f

x := yt+m+1 � yt;

Snew := S + x; /*possible rounding error*/

~x := Snew � S; /*compute correction*/

�x := x� ~x;

�s := �s + �x; /*add correction*/

S := Snew;

�0;t := S + �s; /*corrected sum*/

g

Table 2: Kahan-Babu�ska-summation

The evaluation of the polynomial pt(x) for a certain x

can be done very fast due to the usage of the Clenshaw-

algorithm, which is generally applicable to orthogonal

polynomials ful�lling a three-term recurrence relation.

3.3. Object tracing

Tracing objects in image sequences is another �eld of

application of the presented method. By considering

each coordinate separately, it is possible to estimate

accurately the centre (or other signi�cant points) of

an object in a subsequent image by extrapolating a

polynomial of degree 2 approximating the centres in

the previous images; this allows the determination of a

region of interest, in which the traced object has to be

searched for.

A two-dimensional version of the moving polynomial

approximation has been developed for the preprocess-

ing of images. The usage of a tensor product approach

for two dimensions allows fast algorithms (e.g. for gra-

dient calculation) providing results for further evalu-

ation and interpretation (e.g. edge detection, object

matching) in image sequences.
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