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ABSTRACT

Modern subspace-based algorithms can o�er high- resolu-
tion spectral estimates but with a cost of high computa-
tional complexity for the eigenvalue decomposition (EVD)
involved. In this paper, we propose a novel preprocess-
ing scheme which can be used in conjunction with the sub-
space-based algorithms to alleviate the high computations
previously required. The new scheme is to demodulate the
input data �rst, and then takes the computationally e�-
cient discrete-time Haar wavelet transform (HWT). Only
the principle subband component (PSC) of the transformed
data is kept for further processing, which not only retains
the same amount of information but also possesses the same
characteristic as that of the original (noiseless) harmonic
data. The subspace-based algorithms are thus applicable
to this new set of transformed data but with substantially
reduced computational load. Some simulation results are
provided to justify the proposed approach.

1. INTRODUCTION

The harmonic retrieval problem which arises in various ar-
eas such as geophysics and radar has been an active research
area during the past few decades. Recently, the subspace-
based approaches such as the MUltiple SIgnal Classi�cation
(MUSIC) [1] and Toeplitz Approximation Method (TAM)
[2] (or, equivalently, EStimation of Parameters via Rota-
tional Invariance Techniques (ESPRIT) [3] in this problem
[4]) have received considerable amount of attention. Ow-
ing to the fact that the underlying model assumed is just a
summation of harmonics, these subspace-based methods in
general yield superior performance when compared with the
traditional Fourier-based algorithms or parametric model-
ing approaches [5]. The TAM and ESPRIT are, in partic-
ular, computationally attractive since they do not need to
search over the entire spectral band to locate the desired
harmonics.
However, all of these subspace-based methods call for lots

of computations since they all rely on the computationally
intensive EVD. In this paper, we address a novel discrete-
time Haar wavelet-based preprocessing scheme which can be
used in conjunction with the existing subspace-based meth-
ods to alleviate the computational overhead that would
have been required. Some related works using the wavelet
transform (or subband decomposition) [6, 7] for the spec-
tral estimation problem have been reported recently. For
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example, in [8], a subband decomposition FFT procedure
is addressed. It, however, su�ers the same resolution lim-
itation of the Fourier-based algorithms. [9] considers a
wavelet packet-based approach for this problem, in which
the Daubechies' �lters has been used. However, both of the
algorithms of [8, 9] did not fully exploit or preserve the char-
acteristic of the harmonic data which underlines the modern
high resolution, low complexity subspace-based algorithms
such as [2, 3] for the harmonic retrieval problem.
The proposed approach begins with a demodulation of

the input data. After that, unlike [9], a subband decompo-
sition of the demodulated data via the HWT is carried out,
which is computationally simpler since only additions and
subtractions (except the scaling factor) are involved. Then,
only the PSC of the HWT-data is kept for further pro-
cessing. This new set of transformed data not only retains
the same information as that of the original data (assume
that the demodulation frequency and the levels of decom-
posed stages have been appropriately chosen), but it also
exhibits, as justi�ed analytically, the \frequency shifting"
property observed in [2, 3]. As a consequence, the com-
putationally e�cient subspace rotational invariance (SRI)
[2, 3] technique employed by the TAM and ESPRIT is also
applicable here. Meanwhile, the amount of data need to
be processed is reduced, thus leading to substantially com-
putational savings. The provided simulations con�rm this
new approach.

2. A HAAR WAVELET-BASED APPROACH
TO HARMONIC RETRIEVAL

2.1. Background Review

Consider a set of data fx[n]gN�1n=0 which contain d sinusoids
as

x[n] =

dX
i=1

jaijej(!in+�i) = h
T
F
n
t (1)

where jaij, �i, and !i, i = 1; : : : ; d, denote, respectively,
the amplitude, phase, and (angular) frequency of these

d sinusoids, hT = [a1; � � � ; ad] with ai = jaijej�i , F =

diag[ej!1 ; � � � ; ejwd ], t is a d � 1 vector whose elements

are all equal to 1, and the superscript T denotes matrix
transposition. Our objective is to extract the frequencies,
f!igdi=1, out of the observed noisy data f~x[n]gN�1n=0 , where
~x[n] = x[n] + w[n] and fw[n]g is the contaminated white
noise.
The wavelet transform has recently received consider-

able amount of attention [6]. This new type of transform
can provide octave subband decomposition (multiresolution
analysis) of the input data. The simplest one is a two-band



wavelet transform which just decomposes the input into low
and high spectral bands. Various attempts have been made
to determine the corresponding (orthogonal) lowpass �lter
d0 and highpass �lter d1, most notable the Daubechies's
family of wavelets which can be determined by selecting an
appropriate number of vanishing moments [6].
In this paper, we focus on the discrete-time Haar wavelet

(has only one vanishing moment) out of two reasons. First,
this transform can be e�ciently implemented via the Haar
�lter bank which only requires additions and subtractions.
Second, the transformed data also possesses the frequency
shifting property as that of the original noiseless harmonic
data. Hence, the SRI technique can also be used for the
transformed data.
The HWT with I levels of decomposed stages can be

expressed in the following matrix notation
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with d0 = [1; 1], d1 = [1; �1], and o2 denoting a 1�2 zero
vector.

2.2. A HWT-based Approach

In this section, we will try to employ the HWT discussed
in the previous section to develop a new procedure for the
harmonic retrieval problem. The �rst step of the proposed
approach is to demodulate the noiseless signal fx[n]g by
a speci�c frequency !c, where !c is assumed to be known
and locates in the vicinity of the harmonics of interest. If no
such a priori information is available, we can simply choose
many !c's which are distributed over the whole spectral
band and perform the demodulation process in parallel for
these !c's.
The demodulation process can be described by the fol-

lowing matrix expression

y = Px (4)

where y = [y[0]; � � � ; y[N � 1]]T is the demodulated data,

P = diag[1; e�j!c ; � � � ; e�j(N�1)!c ] denotes the demodula-

tion matrix, and x = [x[0]; � � � ; x[N � 1]]T .
After the demodulation process, we take the HWT of

fy[n]gN�1n=0 and consider the PSC of the transformed data,
which corresponds to the lowest subband portion after the
Haar subband decomposition, as shown in Fig. 1. It is
ready to justify that this manipulation can be expressed as

z =WP y (5)

where z = [z[0]; � � � ; z[Nd � 1]]T (Nd = N

2I
, I is the levels

of decomposition) denotes the PSC of the transformed data
after the WHT and

WP =
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where 12I denotes a 1 � 2I vector whose elements are all
equal to 1, and o2I denotes a 1 � 2I zero vector. Note
that WP corresponds to the �rst Nd rows of W, and
rank(WP ) = Nd. Using (1), it is straightforward to show

that the mth component of z is

z[m] =
1p
2I
h
T (I+ Fe

�j!c + � � �+F
(2I�1)

e
�j!c(2

I
�1))

(Fe�j!c )2
I
m
t; m = 0; 1; � � � ; Nd � 1 (7)

Assume that I has been appropriately chosen so that z
contains the same amount information as that of the orig-
inal data x. Furthermore, as we can observe from (1) and
(7), fz[n]g possesses the same frequency shifting property
as that of the original data fx[n]g except that now the fre-
quency shifting becomes

� = (Fe�j!c )2
I

(8)

= diag[ej(2
I (!1�!c)); � � � ; ej(2I (!d�!c))] (9)

instead of F in (1). Therefore, the subspace-based algo-
rithms are also applicable except that now the transformed
data fz[n]g is being employed rather than fx[n]g. If we
use this new preprocessing scheme in conjunction with the
TAM [2], the procedure is now modi�ed as: consider a Han-
kel matrix Z which is formed by stacking fz[n]g as

Z =

2
664

z[0] z[1] � � � z[Nd � L]
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Using (7), it is easy to show that Z renders the following
decomposition

Z = OQC (11)

where
O =

�
g
L
1 ;g

L
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�
with gsi = [1; ej(!i�!c)2
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On the other hand, using the singular value decomposi-

tion (SVD), Z can also be factorized as

Z =Us�sV
H
s (12)

where Us, �s, and Vs are L � d, d � d, and (Nd � L +

1)�d matrices, respectively, and the superscript H denotes
the Hermitian transposition. Using the SRI structure as
addressed in [2, 3], it can then be shown that

� = T
�
(U#
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y
U
"

s

�
T
�1 (13)



where the superscript y denotes the Moore-Penrose pseu-
doinverse, T is some invertible matrix, and U"

s and U
#

s are
derived, respectively, by deleting the �rst and last rows of
Us. This implies that � can be determined by taking the
eigendecomposition of (U#

s)
yU"

s and the desired frequencies

f!igdi=1 can be easily determined by

!i =
Im(ln i)

2I
+ !c (14)

where i is the (i; i)
th element of �. To enable the procedure

discussed above work properly, the free parameters I and
L must be chosen to ensure WP , Z, U"

s, and U#
s to have

rank d. It can be veri�ed that a su�cient condition for
these rank requirements is�

L� 1 � d;

log2(
N

L+ d� 1
) � I

(15)

2.3. Analysis of the Overall Manipulations

The overall e�ect of the demodulation via (4) together with
taking the PSC of the data after the HWT using (5) is as
follows. The data vector x can be rewritten as

x = R h = [rN1 ; r
N
2 ; � � � ; rNd ] h (16)

where rNi = [1; ej!i ; � � � ; ej!i(N�1)]T . Now, z =
WPPRh = Mh, where M = WPPR. Let wp(k) be the

kth row of WP , then the (k; i)th element of M can be ex-
pressed as

M(k; i) = wp(k) P rNi (17)
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The magnitude response is
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Therefore the overall e�ect of demodulation followed by
taking the PSC of the transformed data after the WHT is
equal to passing the data through a bandpass �lter with cen-
ter frequency at !c. From the above equation, we can also
observe that the bandwith of the bandpass �lter jM(k; i) j
decreases with the increase of I and is independent of k.

2.4. The Overall Procedure (in conjunction with
the TAM)

The overall algorithm which combines the proposed pre-
processing scheme along with the TAM algorithm can be
summarized as follows. Do the following steps in parallel
for all !c's:

Step 1. Perform the demodulation process using (4) with
x[n] replaced by the observed noisy data ~x[n].

Step 2. Determine the PSC of the transformed data based
on the HWT using (5).

Step 3. Stack the data computed in step 2 in the structure of
(10). Perform the SVD of Z and use the SRI technique
to determine the desired frequencies via (13) and (14).

3. SIMULATIONS RESULTS

In this section, we provide some simulations to justify the
validity of the proposed algorithm.
Example

Consider a set of 32 point 1-D data which contains
two harmonics as (f1; �1) = (0:52; �=4) and (f2; �2) =
(0:50; 0); (!i = 2�fi). Two algorithms, the original TAM
[2] and the proposed one, have been carried out (For robust-
ness, the \backward version" of data has also been included,
i.e. the data matrix [ Z; JZ� ] is being employed, where
J is an exchange matrix with one's along the antidiagonals
and zero's elsewhere, and the superscript � denotes the com-
plex conjugation.). The parameter chosen for the original
TAM is L = 15. As for the proposed algorithm, we select
L = 8; 5, and 3 for I = 1; 2, and 3, respectively. The com-
parisons of the average mean squares errors (MSE's) of f1
and f2 v.s. signal-to-noise ratio (SNR) based on 500 Monte
Carlo simulations using these two algorithms are shown in
Figs. 2 and 3, respectively.
We can observe that when I = 1, the proposed algorithm

has almost the same performance as that of the original
TAM. For I = 2 and 3, the proposed one is slightly inferior
with degradation less than 2 d.B. We can also note that the
proposed algorithm signi�cantly outperforms the original
TAM for low SNR's (� 5 d.B). This may be explained by
the fact that the spacing between two adjacent frequencies is
\ampli�ed" due to the downsampling scheme. Additionally,
taking the PSC of the data after the HWT is like putting a
\focus" on the desired harmonics and suppressing the noise
out of subband of interest. These resolution-enhanced and
noise-rejected capabilities become more pronounced for low
SNR's.
Note that the computational overhead involved in the de-

modulation process and the HWT is negligible when com-
pared with that of the SVD. Hence, the overall computa-
tional complexity lies mainly in the arithmetic operations
required for the SVD. Additionally, the manipulations can
be performed in parallel for all !'s. Consequently, the com-
putations required for the proposed approach is roughly
( 1

2I
)3 of that of the original TAM since the data needed to

be processed reduced to 1

2I
of the original one, thus leading

to substantial reduction of the overall computational com-
plexity. As a result, the proposed algorithm provides an
appealing alternative for the harmonic retrieval problem in
view of the performance it can o�er and the computational
overhead it calls for.

4. CONCLUSION

A new fast algorithm for the harmonic retrieval is described
in this paper. This algorithm relies on a novel preprocess-
ing scheme which �rst demodulates the input data and then
keeps only the PSC of the transformed data after the WHT.
Due to the decrease of the data size needs to be further
processed, the computational complexity required is thus
signi�cantly reduced. Meanwhile, the performance remains
roughly the same as that of the original one since the inher-
ent structure of the harmonic data is preserved. Simulation
results demonstrate the validity of the proposed approach.
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Figure 1. The block diagram of the proposed pre-
processing scheme.
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Figure 2. Comparison of �10 log(MSE) v.s. SNR for
the f1 frequency component
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Figure 3. Comparison of �10 log(MSE) v.s. SNR for
the f2 frequency component


