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ABSTRACT

In this paper a new implementation of the two-dimen-
sional Extended Lapped Transform (2-D ELT) is pro-
posed. Compared to the separable solution, proposed
by Malvar [1], the new realization of 2-D ELT has re-
duced arithmetic complexity. Computational savings
are achieved because scaling and inverse scaling of but-
tery matrices, suggested by Malvar for 1-D case, are,
after some modi�cations of the basic separable algo-
rithm, extended to 2-D case. The new implementation
has the same frequency response as Malvar's.

1. INTRODUCTION

For the sake of simplicity and to achieve computational
savings, 2-D transforms are often implemented as sepa-
rable operators, in two steps: all the rows in the block
are transformed with a 1-D transform, and then all
columns in the transformed block are transformed with
the same 1-D transform (or vice versa, result is the
same). In this paper we describe a further computa-
tional optimization of 2-D separable extended lapped
transform (ELT), based on fully optimized 1-D ELT,
proposed by Malvar [1]. Results of our numerous im-
age coding simulations, contrary to results presented in
[1], ful�lled the expectations based on theory: there are
improvements in coding results when overlapping fac-
tor K of ELT is increased, or when ELT with K > 1
instead of MLT or LOT is used. However, for coding
simulations, instead of 256 � 256 image as in [1], we
used 512 � 512 image. To avoid border e�ects, we used
periodic extension of the image.

The fast algorithms for the ELT are based on FFT
algorithm for computation of DCT-IV operator, �rstly
proposed by Duhamel et al. [2]. Duhamel's algorithm
includes input and output rotations, with buttery mat-
rices very similar to window buttery matrices of ELT's.

This work has been supported by the Ministry of Science

and Technology of Republic of Serbia.

2. THE FFT BASED IMPLEMENTATION

OF THE ELT

The structures for the ELT analysis �lter bank and the
ELT synthesis �lter bank are shown in Fig. 1. Because
of the orthogonality of ELT, the synthesis �lter bank
is the transpose of the analysis �lter bank.

The FFT implementation of ELT is derived in the
following way: using the approach of Duhamel et al.

[2], one can suppose that the window has been ap-
plied to the signal, and concentrate on the central part
of ELT, the transform itself. Malvar's approach was
slightly di�erent: he has concentrated on DCT-IV op-
erator. Since the derivation of the TDAC transform is
the straight repetition of the work performed in [2] and
[3] it will not be presented here.

The implementation of TDAC transform is shown
by a owgraph in Fig. 1. It should be emphasized
that the output rotation by angle � = 0 uses no real
operations, and the rotation by � = �=4 uses only 2
real multiplications and 2 real additions. The FFT
is optimally implemented using split-radix algorithm.
For the number of bands M � 16, the FFT could be
optimally implemented with a single stage radix-2, 4, or
8 algorithm, which means no indexing. Duhamel et al.

[2] showed that the TDAC is self-inverse transform, so
there is no need to derive the inverse TDAC transform.

Using the angle values from Table D.3 [1], this �lter
bank has the same frequency response as ELT from [1]
(disregarding some irrelevant channel multiplications
by �1). The angle values �i

k
can be read directly from

Table D.3 in [1]. However, the values for �0
k
should be

obtained by following relations:

�0k = �̂0
2k; k = 0; 1; :::;M=4� 1 (1)

�0k = �=2� �̂0M�2k�1; k = M=4; :::;M=2� 1 (2)

where �̂0
k
are the angles from Table D.3 [1]. This permu-

tation is essential to achieve the necessary reordering
of elements for TDAC transform. On the other hand,
in programs for ELT's proposed by Malvar [1], data
unshu�ing steps were moved outside of recursive
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Figure 1: The structure for the fast implementation of the ELT analysis/synthesis �lter bank, and the elements
of ELT structure: TDAC transform and butteries. sk = sin �k, ck = cos �k, �k = (4k + 1)�=(4M ), wsk =
sin(k�=M ), wck = cos(k�=M ). Note that the butteries Di's and D0 are di�erent.

modules. In our approach, however, it was easier to
recognize full possibilities of scaling and inverse scaling
of butteries matrices.

3. SCALING OF BUTTERFLY MATRICES

As proposed by Malvar [1], all the coe�cients in the
cascade of window butteries could be scaled, so that
diagonal entries would be equal to 1 or �1, and neces-
sary inverse scaling would be applied to the last but-
tery in cascade (D0). Computational complexities of
ELT's in Table 5.1 [1] correspond to this way of scaling
butteries. However, looking at the Fig. 1, it is easily
perceived that the inverse scaling could be applied to
the input rotations of FFT based DCT-IV realization,
for all possible numbers of bands, M . This �rst step
in optimization procedure, saves one multiplication per
sample. If butteries are realized as 3/3, then saving
is equal to 0.5 multiplications and 0.5 additions per
sample. It should be noted here that there is a subtle
computational di�erence between the MLT [1], which
uses the sine window, and ELT with overlapping factor
K = 1, which uses buttery angles given in [1]. Be-
cause of similar frequency responses, MLT is usually
considered equivalent to ELT with K = 1.

An e�cient MLT implementation was proposed by

Duhamel et al. in [2], and synthesis �lter bank algo-
rithm for this MLT implementation was completed by
�Sevi�c and Popovi�c [3]. If butteries in MLT are merged,
as proposed by Duhamel et al. [2], this part of MLT al-
gorithm requires 2 multiplications and 3 additions per
sample. However, this kind of merging is not possi-
ble for ELT with K = 1, where computational savings
are achieved by scaling and inverse scaling of butter-
y coe�cients, so this part of ELT algorithm requires 3
multiplications and 2 additions per sample (if rotations
are realized as 3/3, this part of ELT algorithm requires
2.5 multiplications and 2.5 additions per sample).

4. 2-D EXTENSION OF ELT

The basic structure for the 2-D separable ELT analysis
�lter bank, as proposed by Malvar [1], and based on
the use of FFT for DCT-IV realization, is shown in
Fig. 2. In the simplest form of implementation, whole
rows or columns are fetched from image matrix, and,
after processing with 1-D ELT's, returned to matrix.
Inverse scaling is applied to input rotations. Although
row/column calculations are easy to implement using
FOR loops, they are not easy to correctly represent in
owgraph.

It is possible to reorder some of row and column
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Figure 2: The basic structure for the 2-D separable ELT analysis �lter bank. N � N denotes image matrix, IR
and OR are input and output rotations, respectively.
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Figure 3: The structure from Fig. 2 with reordered rows/columns computation. Cascade of butteries and delays
is substituted by INPUT WINDOW block. Di are D0 are the same as in Fig. 2. IR and OR - scaled input and
output rotations. IRIS and ORIS - inverse scaled input and output rotations.

computation, which are independent, without a�ecting
the �lter bank output. Reordered owgraph, shown
in Fig. 3. resembles the \true" 2-D implementation.
2-D input window is computed �rst (row/column), af-
ter that 2-D input rotations (column/row, to save on
number of row/column fetching), after that 2-D FFT
(row/column), and �nally, 2-D output rotations (col-
umn/row). To save on number of accesses to matrix,
it is possible to reorder input window and input rota-
tions row/column computations, as shown in owgraph
in Fig. 4. Implementations shown in Fig 3. and 4. are
equivalent.

Reordering, shown in Fig. 3. and 4. makes it possi-
ble to achieve computational savings, based on scaling
of all butteries (left or right from FFT computations),
and inverse scaling on the last one in the cascade, as
shown in Figs. 2. and 3. However, inverse scaling in
this last buttery should compensate for scaling per-
formed both in row and column computations. Inverse
scaling in the same dimension is well explained for the

1-D case [1]. Inverse scaling for scaling performed in
another dimension is easy to accomplish by using the
following rule: if k'th element in row computation is
scaled by factor S[k], then subsequent computations in
k'th column are to be inverse scaled by the factor S[k].
Because of that, inverse scaled buttery coe�cients in
Fig. 3. have both row and column indices, k and j.
After scaling and inverse scaling, row and column cal-
culations before and after FFT computation are not in-
dependent any more, so it is not possible to put scaled
operators back in order of Fig. 2. It should be stressed
that the new implementation shown in Fig. 3. and 4.
has the same frequency response as implementation in
[1].

The numbers of operations per sample for the new
implementation and for the implementation based on
usual rows/columns computations, using 1-D ELT [1]
are given in Table I (rotations are counted as 3/3).
Number of operations per sample for 2-D ELT proposed
in [1] are determined from Table 5.1 [1] by multiplying
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Figure 4: The structure fromFig. 3. with reordered input window and input rotations rows/columns computation.
Butteries are same as in Fig. 3.

Table 1. Computational complexity of the 2-D ELT [1] and the new implementation of the 2-D ELT. M denotes
the number of bands in one dimension, K is the overlapping factor, and LT denotes the size of look-up table.

K = 1 K = 2 K = 3 K = 4

M Mul/s Add/s LT Mul/s Add/s LT Mul/s Add/s LT Mul/s Add/s LT

[1] 2 5.0000 5.0000 4 7.0000 7.0000 5 9.0000 9.0000 6 11.0000 11.0000 7

[1] 4 7.0000 9.0000 8 9.0000 11.0000 10 11.0000 13.0000 12 13.0000 15.0000 14
[1] 8 8.0000 12.0000 18 10.0000 14.0000 22 12.0000 16.0000 26 14.0000 18.0000 30
[1] 16 9.0000 15.0000 44 11.0000 17.0000 52 13.0000 19.0000 60 15.0000 21.0000 68

[1] 32 10.0000 18.0000 90 12.0000 20.0000 106 14.0000 22.0000 122 16.0000 24.0000 138
new 2 4.5000 4.5000 4 6.5000 6.5000 5 8.5000 8.5000 6 10.5000 10.5000 7

new 4 5.5000 7.5000 10 7.5000 9.5000 12 9.5000 11.5000 14 11.5000 13.5000 16
new 8 6.2500 10.2500 40 8.2500 12.2500 44 10.2500 14.2500 48 12.2500 16.2500 52
new 16 7.1250 13.1250 163 9.1250 15.1250 171 11.1250 17.1250 179 13.1250 19.1250 187

new 32 8.0625 16.0625 631 10.0625 18.0625 647 12.0625 20.0625 663 14.0625 22.0625 679

items by 2 (to account for row/column calculations)
and by dividing by M , number of input/output ele-
ments. LT denotes the size of look-up table necessary
for realization of fast algorithm. For rotations counted
as 4/2 the size of look-up table would be about 30%
less. Savings (Mul + Add) per sample are dependent
on number of bands M and vary between (0.5 + 0.5)
for M = 2 and (1.9375 + 1.9375) for M = 32.

The increase of the size of the look-up table for but-
tery coe�cients is the price to be paid for implemen-
tation of the new algorithm. However, memory require-
ments for look-up table are still negligible compared to
memory requirements for whole image processing.

In a simplest form of implementation, whole rows
and columns are fetched from and retrieved to image
matrix. However, looking at Figs. 2 and 4, it is seen
that the new algorithm requires more frequent accesses
to image matrix. If realized in this way, the new im-
plementation, with reduced number of real operations,
and increased number of real data transfers, wouldn't
be much faster compared to the implementation from
Fig. 2. on most computers. To take advantage of re-
duced computational complexity of the new implemen-
tation, matrix elements should be directly accessed and
processed, using pointers.

Because of orthogonality of the ELT, the synthesis
�lter bank is the transpose of the analysis �lter bank,
and has the same number of operations as the analysis
�lter bank.

5. CONCLUSION

In this paper, a new implementation of the 2-D Ex-
tended Lapped Transform is proposed. Compared to
the separable solution [1], the new realization of 2-D
ELT has reduced arithmetic complexity. Computa-
tional savings are achieved because scaling and inverse
scaling of buttery matrices, suggested by Malvar for
1-D case, are, after some modi�cations of the basic al-
gorithm, extended to 2-D case. The new implementa-
tion has the same frequency response as Malvar's.
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