
EFFICIENT COMPUTATION OF THE DISCRETE WIGNER DISTRIBUTION FUNCTION
THROUGH A NEW ITERATIVE ALGORITHM

∗Isabel García, � Consuelo Gonzalo, � Margarita Pérez Castellanos, ∗José A. Moreno, ∗J.M. Sánchez-Dehesa

∗Dep. Informática, Escuela Politécnica, Universidad de Extremadura, Av.Universidad S/N, Cáceres, Spain

Phone/Fax:+34.27.257256/257202,E-mail: isabelga@unex.es
� Dep. Arquitectura y Tecnología de Sist. Informáticos, Facultad de Informática.UPM. Campus de

Montegancedo, Boadilla del Monte, 28668 Madrid

ABSTRACT

This paper presents a new iterative method to speed up
the DWDF computation. At the present it has been considered
from a computational point of view as an 1-D section of the
Wigner Kernel (WK) N points FT’s [1],[4]. We purpose a new
way to compute the DWDF based on the symmetry properties of
the WK and the cosine function. The proposed algorithm is
doubly based on a subdivision procedure: on the one hand we
have subdivided for each m-value the sum over the k variable
into log2N/4-PL partial sums, where PL is the k parity level.
And the other hand for each n-value the algorithm computes the
DWDF elements by grouping its in group depending on the m
PL. The algorithm has been optimized to reduce the accesses of
memory, and it improves the FFT algorithms when the number
of samples is less than 256 and for this number the algorithm
match the FFT algorithms.

1. INTRODUCTION

Some years ago the joint representations were
considered as an alternative to classical signal representations,
and those are being used extensively in areas as speech and
image processing [1],[2]; it has been concluded that the Discrete
Wigner Distribution Function (DWDF) presents better
properties for Digital Signal Processing than other joint
representations. A common disadvantage to all the joint
representations is its high computational complexity, that
supposes a handicap for computing in real time. Several forms
to compute the DWDF have been proposed in the literature to
speed up the DWDF, using different methods, digital
computation [1], optical processors [3], and VLSI architectures
[4].

This paper presents a new iterative algorithm (AIT) to
speed up the DWDF computation reducing the number of
operations. We are looking for a new way to compute the
DWDF, based on symmetrical properties of the DWDF
elements, the WK and the exponential function in equation (1).
The number of operations is drastically reduced by the iterative
algorithm in relation to the conventional computation of the
DWDF. Moreover the fast algorithms frequently used (FFT) are
improved when the number of samples is less than 256.

Moreover the AIT is simpler than other FFT algoritms
because of its iterative feature, and it is easy to compute on a
specific architecture since only operations of additions and
multiplications are required for it.

2. COMPUTATIONAL PROPERTIES OF DWDF

The DWDF for a 1-D signal f(n) defined by N samples,
is given by the expression:

 Wf n m
N

r f n k e i m N k

k N

N

(,) (,) (/)= −

=−
∑1 2 2

2

2 π (1)

where n and m are the spatial and frequential variable
respectively. And where:

r f n k f n k f n k(,) ()
*

()= + − (2)

The rf(n,k) usually named the Wigner Kernel (WK) , is a
hermitian function with respect to the k variable, so the DWDF
is always a real function. The computation of the DWDF can be
splitted into two computational subproblems: the computation of
the WK, equation (2), and the computation Fourier transforms
of N points implied by the equation (1) for each n-value of the
WK. The first step has been studied by the authors [5], and a
model has been segmented and mapped into a generic number
of Process Units [6] and it has been proposed a Parallel Process
Unit for computing it [8].

We have assumed that the input signal must be a real
signal, and the number of samples N is a power of two

The DWDF is always a real function, moreover if only
real signals are considered, it is a symmetrical function with
respect to the m variable, that is, Wf(n,m)=Wf(n,-m). Based on
this symmetry only half DWDF components should be
computed. On other hand because of the WK symmetry with
respect to the k variable, rf(n,k)=rf(n,-k) and the sine function
properties sin(x)=-sin(-x), then the imaginary part of the
exponential is zero for every k value. Besides the cosine
function parity, cos(x)=cos(-x), it could be concluded that the
equation (1) can be rewrites it as:

Wf n m
N

r f n k
mk

Nk
N

r f n(,) * (,) cos (,)=
=−

−
∑ +

2 2

2

1
0

π
 (3)

3. SYMMETRIES OF THE DWDF WITH
RESPECT TO DISCRETE VARIABLES

The figure 1 shows the cosine values of the function
cos(2πmk/N) for N=32. It is obvius from it, that there are some
m-values whose cosine values are coincident, for one or more k

k m -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-15 0..981 -0.924 0.831 -0.707 0.556 -0.383 0.195 0 -0.195 0.383 -0.556 0.707 -0.831 0.924 -0..981

-14 -0.924 0.707 -0.383 0 0.383 -0.707 0.924 -1 0.924 -0.707 0.383 0 -0.383 0.707 -0.924
-13 0.831 -0.383 -0.195 0.707 -0.9810.924 -0.556 0 0.556 -0.924 0.981 -0.707 0.195 0.383 -0.831

-12 -0.707 0 0.707 -1 0.707 0 -0.707 1 -0.707 0 0.707 -1 0.707 0 -0.707

-11 0..556 0.383 -0.981 0.707 0.195 -0.924 0.831 0 -0.831 0.924 -0.195 -0.707 0.981 -0.383 -0..556

-10 -0..383 -0.707 0.924 0 -0.924 0.707 0.383 -1 0.383 0.707 -0.924 0 0.924 -0.707 -0..383

-9 0.195 0.924 -0.556 -0.707 0.831 0.383 -0.981 0 0.981 -0.383 -0.831 0.707 0.556 -0.924 -0.195

-8 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0

-7 -0.195 0.924 0.556 -0.707 -0.8310.383 0.981 0 -0.981 -0.383 0.831 0.707 -0.556 -0.924 0.195

-6 0..383 -0.707 -0.924 0 0.924 0.707 -0.383 -1 -0.383 0.707 0.924 0 -0.924 -0.707 0..383

-5 -0..556 0.383 0.981 0.707 -0.195-0.924 -0.831 0 0.831 0.924 0.195 -0.707 -0.981 -0.383 0..556

-4 0.707 0 -0.707 -1 -0.707 0 0.707 1 0.707 0 -0.707 -1 -0.707 0 0.707

-3 -0.831 -0.383 0.195 0.707 0.981 0..924 0.556 0 -0.556 -0..924 -0.981 -0.707 -0.195 0.383 0.831

-2 0.924 0.707 0.383 0 -0.383 -0.707 -0.924 -1 -0.924 -0.707 -0.383 0 0.383 0.707 0..924

-1 -0..981 -0..924 -0.831 -0.707 -0.556-0.383 -0.195 0 0.195 0.383 0.556 0.707 0.831 0..924 0..981

Figura 1.-Cosine values, cos (2πmk/N), for N=32

values. In the same way, for a constant m value, there are some
k values which cosines values are equal. These equalities or
symmetries always appear with respect to the m and k values
_N/4, -N/8, -N/16,...,-2, which are power of two. Thus, two
symmetrical DWDF elements with respect to m=-N/4=-8 as
Wf(n,-10) and Wf(n,-6), have identical cosine values for every
even k value. And they have identical cosine value except the
sign for every odd k value.

Since the particular manner that these symmetries in the
cosine values are produced, it is neccesary in order to establish
the AIT algorithm, to define the Parity Level concept. In this
sense a number could be expressed as two factors product, these
are, an odd number and the expression 2x, where x is named the
Parity Level (PL) associated to the number which has been
decomposed. So, for example, x=0 for the odd numbers.

The symmetrical elements with respect to the
m=_N/8=_2, represented in the figure 1, for example, Wf(n,-5)
and Wf(n,-3), are identical cosine values for every even k value
whose PL number is equal to 2, and they are identical cosine
values except the sign for every even k value whose PL=1, and
they are different cosine values for every odd k value whose
PL=0.

In the same way, for a constant m value, there are
symmetries with respect to the k variable, and these symmetries
depend on PL number associated to m value. Thus the Wf(n,-1)
DWDF element have identical cosine values, except the sign,
for the symmetrical k values with respect to the k=-N/4=-8; this
symmetry is the same for every m odd value. In this manner, the
Wf(n,-2) DWDF element has identical cosine values for the k
values simmetrical with respect to k=-N/4=-8, and it has

identical cosine in absolute value for the k values which are
symmetrical with respect to the k=-N/8=-4.

It is clear from the above paragraph that, the number of
operations for computing the DWDF can be reduced by
exploiting the equalities or symmetries between the cosine
values. In order to exploit the two kind of symmeries, with
respect to k and m variables, it is neccesary to compute the
DWDF elements according to the following method:

1. For exploiting the m-symmetries, it is suitable to split the
sum on k variable (eq.3) into several partial sums according
to PL number of k values PL. Thereby two DWDF elements
(m values) are symmetrical if they have one or more partial
sums in common (with or without change of sign), and
solving the symmetry means to calculate the common partial
sum and to accumulate it in both elements.

2. For exploiting the k-symmetries, it is useful to compute the

m-elements grouped according to its PL value, because a
new function, denoted by Rif(n,k), will be defined for each
group of m values. The WK will be replaced by this function
in the equation (3), so it has a smaller number of
components to be added. To obtain the Rif(n,k) function the
WK components corresponding to symmetrical k values with
respect to k=-N/4, -N/8,....,-2, have been added or
subtracted. Thus the WK components that in the Eq. (3) are
multiplied by the same cosine values, are added and
multiplied later, reducing the number of multiplications.

In this way, any DWDF element, for a constant n value,
can be obtained as a sum of log2N/4-PL(m) partial sums, which
have been computed separately,being PL(m) the m parity level,
by the following equation:

[] Wf n m
N

SkN
j
m

j i

N
Adji n(,) *

*
(,)=

=
∑ +

1
2

4
0 (4)

Where SkN/j m (5) is the partial sum that includes as
many elements as N/j value, i=2,4,8,..,N/4 and
j=4*i,8*i,16*i ,...,N taking the power of two values. And Adji
(n,0) are the WK terms that are excluded from partial sums that
depend on i value, and Adji is stated through an equation similar
to (6), changing k value by 0. Index i and PL are related by the
expression PL=log2i/2.

S k N
j

m R i
f

n
j

i
k

j

i

m
j

i
k

j

i

Nk
N

j

= +

+

= −

−
∑ (, (

* *
) c o s

(
* *

)

2 4

2
2 41

π

 (5)

Where Rif(n,k) is given by:

Ri f n k rf n k
s

r f n k
pN

q
r f n k

pN

qp

q

q

i
(,) (,) () (,) (,)= + − − − + −

=
∑

=
∑

1

1

2

2

 (6)
where s=1 if q=i and s=0 if q≠i; moreover q=2,4,8,...,i take
values of two powers from 1 to i and p=1,3,5,7,...,q/2-1 always

take odd values and k variable takes values from k=-1 to k=-
N/(2*i)+1

From the eq.(4), a symmetrical element to m, m’ with
respect to the m=-N/4, could be computed like show the eq. (7):

[{ }] Wf n
N

m
N

j

SkN
j
m

j i

N
Adji n(,) * ()

*
(,)− − = −

=
∑ +

2

1
2 1 8

4
0

(7)

Any additional multiplication it is not necessary for the
m’=_N/4-m symmetrical computation.

4. THE ITERATIVE ALGORITHM AIT

The iterative algorithm AIT for computing the DWDF
elements is represented by its flowchart in figure 2.

The Wf(n,0), Wf(n,-N/2) and Wf(n,-N/4) DWDF
elements are obtained outside the algorithm, because not any
multiplications are required for their computation.

The algorithm must be repeated for each n-value. On the
flowchart i represents the group of m-values and SkN/j m are the
partial sums that two elements the current m value and (2*l-m)
value. Each partial sum can be computed by the eq. (5). When
all the symmetries have been into account, the current m-value
and its symmetrcal with respect to the m=-N/4 can be obtained,
and a new value will be computed. When all the m-values
belonging to the current group of m-values have been computed,
a new group of values will be obtained.

The algorithm has been optimized in its application to
reduce the number of memory accesses. Thus, the result is that
the number of access is always less than the total number of
elements to calculate N. Also it is optimized the required
memory because of only N/2-1 cosines values are stored, instead
of N2, and we have a simpler counter method, the value
neccesary at every time. Moreover the number of additions is
also reduced, since each different partial sum is computed only
once and it is stored in the corresponding elements.

N N2 FFT AIT AITM

8 64 12 1 1

16 256 32 6 5

32 1024 80 27 21

64 4096 192 112 85

128 16384 448 453 341

256 65536 10244 1818 1365

Table I.- Comparison between methods
by number of multiplications

n ; i=1

i=2*i; m=-i/2; s=i/4; r=2N

s=s*2; r=r/2 ; l=-s ; j=r

Wf (n,(2*l)-m)= Wf (n,m)-SkN/jm ;
Wf (n,m)=Wf (n,m)+SkN/jm

i>N/4

Wf (n,m)=2* Wf (n,m)+Adji,
Wf (n,-N/2-m)= 2*Wf (n,-N/2-m)+Adji

Figure 2.- AIT flowchart

l=l*2; j=j/2

j<4i

m=m-i

m<-N/4+i/2
YESNO

YES

NO

At the moment, all the applications in which the DWDF
is presented make use of existing Fourier Transformation
algorithms for its computation, usually FFT,[1],[7]. The
presented algorithm is specifically thought for DWDF
computation, and improve FFT for certain values of signal
samples. Table I shows the number of multiplications in our
algorithm comparing with the conventional computation (N2)
method and the FFT (N/2logN) algorithm. The algorithm
presented can be enhanced to reduce the number of
multiplications over 25% (AITM).

The result in the table I are referred to a single n value.
To compute the DWDF elements for every n value it is
neccesary to apply the algorithm AIT over each n value. In this
sense the AIT exploits the WK zeros, so in the total computation
of the number of multiplications, the results in the table I must
be multiplied approximately by 3N/4 for the AIT, instead of N,
equalizing so the number of multiplication when N=256 for the
AITM.

5. CONCLUSIONS

In conclusion, it has been established a specific
algorithm for DWDF computation, where the DWDF special
properties have been exploited to the utmost, but maintaining its
iterative character. In this sense the AIT algorithm is simpler
than other fast algorithms, because only intern product
operations are required. Furthermore the memory required to
keep up the cosine values can be reduced from N2 to N/2+1.
Moreover the AIT algorithm practically surpasses the classical
FFT algorithm nevertheless when the number of samples
N=256, when the optimizations are took into account.

This work has been supported by the DGICYT project number
pb92-0749

6. REFERENCES

 [1]C.Gonzalo, J.Bescós, L.R. Berriel-Valdós and J. Santamaría,
Space-variant filtering through the Wigner Distribution
Function, Applied Optics, 28, 4, 730-736, 1989.
[2] L.Cohen, Time-Frequency Distributions: A review,
Procceding of IEEE, Vol. 77, Nº 7, 1989.
[3] C. Gonzalo, J. Bescós, L.R. Berriel-Valdós and P. Artal,
Optical digital implementation of the Wigner Distribution
function: use in space variant filtering of real images, Applied
Optics, 29,17, 2569-2575, 1990.
[4] I. Gertner and M. Shamash, VLSI architectures to compute
the Wigner Distribution, the VLSI Journal, 9, 141-161, 1990.
[5] C. Gonzalo, M.M. Pérez Castellanos, I. García, P. Martinez
and J.M. Sanchez-Dehesa, Parallel computation of Discrete
Wigner Distribution function based on Neural Schemes,
IASTED’94, pp. 224-228, 1994
[6] C.Gonzalo, M.M. Pérez Castellanos, I. García, A. Diaz,
Segmentación de un Modelo Computacional Paralelo del kernel
de la Distribución de Wigner Discreta, DCIS/SICD’95,
Zaragoza, Spain, Nov. 1995.
[7] B. Boashash and P.J. Black, An efficient Real-Time
Implementation of the Wigner-Ville Distribution, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-35, No. 11, 1987.
[8] M.M. Perez-Castellanos, C. Gonzalo, A. Diaz Lavadores,
I.García Propuesta de unaUnidad de Proceso Paralela para el
cómputo del Kernel de Wigner en aplicaciones en tiempo real,
DCIS’96, pp 245-250, Sitges, Spain.

