PARALLEL-RECURSIVE FILTER STRUCTURES FOR THE COMPUTATION
OF DISCRETE TRANSFORMS

Richard J. Kozick and Maurice I'. Aburdene

Electrical Engineering Department
Bucknell University, Lewisburg, PA 17837
kozick@bucknell.edu

ABSTRACT

A general approach is presented for implementing dis-
crete transforms as a set of first-order or second-order
recursive digital filters. Clenshaw’s recurrence formu-
lae are used to formulate the second-order filters. The
resulting structure is suitable for efficient implementa-
tion of discrete transforms in VLSI or FPGA circuits.
The general approach is applied to the discrete Legen-
dre transform as an illustration.

1. INTRODUCTION

Parallel-recursive algorithms for the computation of for-
ward and inverse discrete transforms have been studied
recently due to their suitability for efficient VLSI im-
plementation. Earlier papers have addressed the im-
plementation of the discrete cosine transform (DCT)
and related trigonometric transforms such as the dis-
crete sine transform, discrete Hartley transform, and
discrete Fourier transform [1]-[7]. In this paper, a gen-
eral framework is developed for the design of parallel-
recursive filter structures for the computation of dis-
crete transforms. Previously-known implementations
for the DCT [5] are time-invariant digital filters and
follow as special cases of the general structure pre-
sented here. In addition, new parallel and efficient
time-varying filter structures are presented for the dis-
crete Legendre transform in which the number of time-
varying filter coefficients is minimized.

The forward transform of a set of N + 1 real-valued
data points y(0), y(1),...,y(N) is defined by

Y(n) = %Zy(k’) P.(k), n=0,1,....N, (1)

" k=0

and the inverse transform is defined by

In (1) and (2), the P, (k) are the orthogonal basis vec-
tors for the discrete transform with Zi\;o Po(k) Py (k) =
Omn C’,zl. The basis vectors are assumed to be orthogo-
nal to facilitate the application to discrete polynomial
transforms in Section 3. However, the methods de-
scribed in Section 4 are applicable to orthogonal as
well as non-orthogonal transforms.

Section 2 describes first-order and second-order fil-
ter bank structures for computation of discrete trans-
forms. The first-order and second-order filter imple-
mentations are compared, and Clenshaw’s recurrence
formulae are introduced as a tool for designing the
second-order filters. Section 3 presents an analytical
approach for designing a parallel-recursive implemen-
tation of the inverse transform when the basis vectors
P, (k) are orthogonal polynomials. Section 4 describes
a numerical procedure for designing parallel-recursive
structures for forward and inverse discrete transforms
for a wide class of basis vectors.

2. GENERAL FILTER STRUCTURES

Any transform can be implemented with first-order fil-
ters, but in many cases the second-order filter imple-
mentation is more efficient.

2.1. First-Order Filters

A first-order difference equation that computes the for-
ward transform Y (n) in (1) for a particular n is

Y1 = 0
e 1/)k_1+Pn(k)y(k), k=0,...,N (3)
Y(n) = (1/C2)¢n.

A parallel bank of N+1 first-order filters of the form (3)
are needed to compute the transform values Y(0), ...,
Y(N) from the data values y(0),...,y(N). Note that
the filter coefficients P, (k) vary with the time index
k. Hence implementation of the first-order filter bank

requires (N + 1)? memory locations to store the time-
varying coefficients P, (k), as well as a total of N +1
adders, N 4+ 1 multipliers, and N + 1 delay elements.
The memory requirement (N + 1)? grows rapidly as N
increases. Using a bank of second-order filters requires
twice as many adders, multipliers, and delay elements,
but in many cases the amount of memory required to
store the time-varying filter coefficients is linearly pro-
portional to N. Further, the second-order filters are
time-invariant for many discrete trigonometric trans-
forms [1]-[7], which greatly simplifies the implementa-
tion compared with the time-varying filters in (3). The
remainder of the paper presents an approach for de-
signing second-order filter banks that are more efficient
than first-order filter banks for the computation of dis-
crete transforms.

2.2. Second-Order Filters

Clenshaw’s recurrence formulae [8] provide a general
approach to deriving a second-order filter bank for dis-
crete transform computation. As with the first-order
filters in (3), the forward transform is computed by
applying the data points y(0), ..., y(N) serially to the
bank of N 41 recursive digital filters. The transformed
data Y(0),Y(1),...,Y(N) are then available in paral-
lel after N + 1 time steps. The structure of each re-
cursive filter is identical and will be specified below.
The inverse transform in (2) is computed with a sim-
ilar parallel-recursive architecture, except that the in-
put sequence Y (0),...,Y(N) is applied serially to the
filter bank, and and the outputs y(0),...,y(N) appear
in parallel after N + 1 time steps.

Clenshaw’s recurrence formulae provide a parallel-
recursive algorithm for computing sums of the form
(1) and (2). Clenshaw’s recurrence formulae were used
in [5] to develop parallel-recursive implementations for
the discrete cosine transform (DCT). The approach in
[5] relied on trigonometric identities that are available
for the DCT kernel, so the approach in [5] does not
extend in a straightforward manner to other discrete
transforms. A contribution of this paper is the appli-
cation of the Clenshaw recurrence formulae to a large
class of transforms, and in particular to the discrete
Legendre transform (DLT) [9].

Clenshaw’s recurrence formulae are applied to the
forward transform in (1) as follows. First, a recurrence
relation 1s required for the basis vectors of the form

Po(k+1) = a(k,n)Pa(k) + Bk, n)Po(k — 1),
n=01,..N,
k=1,2,...,N—1. (4)

The coefficients «(k, n) and 5(k, n) that satisfy (4) for

a given set of basis vectors {P,(k)} are generally not
unique and can be chosen in many ways, as will be
described in Sections 3 and 4. Once the «(k,n) and
B(k,n) coefficients are fixed, then a recursive algorithm
for computing Y (n) in (1) is given by [8]

1/)_2 = 1/)_1 =0
Ur = m[l/)k—z—a(k’”wk—l_y(k)]’
k=0,1,...,N. (5)

The transform value Y (n) = ¢ is computed with the
following definitions:

B(N,n) = Any nonzero value,e.g. 1 (6)
o) = =N P @

Ca
B(N +1,n) = ~5.0 (8)

Figure 1 contains a signal flow graph for the filter. In
the event that P,(N) = 0, then (7) and (8) are not
used, but instead Y (n) is taken at time k& = N from
the point in Figure 1 following the —« (N, n) multiplier,
with a(N,n) = B(N,n)P,(N —1)/C2.

The filter in Figure 1 has time-varying coefficients
when a(k,n) or 3(k,n) change with the time index k.
If the o and 3 coefficients vary independently with &
and n, then 2(N + 1)? memory locations are needed
for storage and there is no advantage relative to the
first-order filters in (3). As will be shown in Sections 3
and 4, in many cases the «, 3 values can be chosen to
satisfy the recursion (4) while only requiring memory
of size proportional to N. Note that a bank of N +
1 second-order filters with the structure in Figure 1
requires 2(N + 1) adders, 2(N + 1) multipliers, and
2(N + 1) delay elements.

A recursive algorithm for the inverse transform in
(2) is formulated using Clenshaw’s recurrence formulae
in a similar way. Instead of beginning with the recur-
sion over k as in (4), the inverse transform begins with
a recursion over n of the form

Pasa(k) = aln,k)Pa(k) + Bn, k) Pacs (k).
k=0,1,...,N,
n=12... N-1. (9)

Although we have used the same symbols, the coeffi-
cients «, § are generally different in the k-recursion (4)
and the n-recursion (9). Methods for finding « and 3
in (9) are considered in Sections 3 and 4. The recur-
sive algorithm for the inverse transform is identical to
the forward transform, except that the roles of k& and
n are interchanged. For example, the algorithm for

computing y(k) with transform values Y(0), ...
entering serially is as follows.

Y ()

Yoy = Y1 =0
1
Y = m Wn—z - a(n, k’)i/)n—l - Y(n)])
n=0,1,...,N. (10)
Then y(k) = ¢n with the following definitions:
B(N,k) = Any nonzero value, e.g. 1 (11)
a(N k) = —B(N k)M (12)
)) PN(k)
1
BIN+L k) = YD) (13)

In the event that Py (k) = 0, then (12) and (13) are
not used, but instead y(k) is taken at time n = N from
the point in the filter following the —a(N, k) multiplier,
with a(N, k) = B(N, k) Py_1(k).

Sections 3 and 4 describe methods for finding the
«, B coefficients that satisfy the recurrence relations (4)
and (9) for the basis vectors. Once the «, § coefficients
are known, then (5) and (10) are the second-order re-
cursive digital filters that compute the transform.

3. ORTHOGONAL POLYNOMIAL
TRANSFORMS

An analytical approach is available for finding the coef-
ficients for the n-recursion in (9) when the basis vectors
Pn(0),..., P,(N) are discrete, orthogonal, n'"-order
polynomials. The polynomials can be computed using
the recursive equation

(k—n) P (k) —an Pog1 (k) = by Po (k) +cn Pa_i1(k) (14)

where ap is chosen so that the left side of (14) has
degree n and then b,,c, are given by

N

by = > _(k—n)Pu(k)Pu(k)
k;O
e = 3 (k=n)Pu(k)Pa_y(k).
k=0
Comparing (14) with (9), «, 8 are identified as
_ (k=n)—b,
aln k) = S
Bln.k) = B(n) = —=.

Note that 3 is independent of k, so it is denoted by
B(n).! This approach provides closed-form expressions

LAt the final time step n = N 4+ 1, 8 generally does vary with
k according to (13).

for ae(n, k) and #(n) whenever the P, (k) are orthogonal
polynomials.

For the discrete Legendre polynomials defined in
[9], the results are

2n+1
= a(n)as(k)
_ n(N+n+1)
pln) = (n+ 1)(N —n) (16)

fork=0,1,...,Nandn =1,2,..., N—1, with «(N, k),
B(N,k), and B(N + 1, k) defined by (11)-(13). Note
that a(n, k) = ai(n)as(k) is separable in n and &,
and the k-dependence is relatively simple with a5 (k) =
NN-2...,—-N+4+2 —-Nfork=0,1,...,N. Each
filter for the inverse DLT computation has the form
shown in Figure 2. The set of N + 1 filters requires
2(N + 1) adders, 3(N + 1) multipliers, and 2(N + 1)
delays. Further, only 4N 4+ 2 memory locations are re-
quired to store the filter coefficients, which for large N
is more efficient than the first-order filter structure.

The forward transform requires a k-recursion of the
form (4). An analytical approach does not seem to be
available that exploits properties of orthogonal poly-
nomials for this case. A general numerical procedure
that is applicable to a wide class of forward and in-
verse discrete transforms is developed in the following
section.

4. GENERAL NUMERICAL PROCEDURE

The «, § coefficients that satisfy the recursions (4) for
a given set of basis vectors {P,(k)} can be chosen in
many ways. Indeed, (4) contains (N —1)(N 4 1) linear
equations with 2(N — 1)(V + 1) variables, so a non-
unique solution exists as long as the condition P, (k +
1) # 0 with P, (k) = P,(k—1) = 0 is avoided. However,
the second-order implementation is efficient only if the
time-varying filter coefficients can be stored in less than
2(N — 1)(N + 1) memory locations.

One approach for obtaining efficient second-order
implementations is to constrain the a(k,n), 3(k,n) in
some manner, and then solve (4) subject to the con-
straints. One interesting and useful solution of this
type occurs when the P, (k) are the DCT basis vectors,
and the constraints are 3(k,n) = —1. Then the numer-
ical solution of (4) for a(k, n) corresponds exactly with
the time-invariant filter implementation presented in
[5]. As another application of this procedure, the in-
verse DLT implementation (15),(16) results when the
3 are constrained to vary only with n and not with
k. Thus in these two instances, known solutions that

1

- y(K Bk + 1,n) Py 1 Y(n) attimek=N
o > O - 0 =0
k=0,1,..,N
| z7 |
- a(k,n)
o - ¢ Vr-1
1 7t
1
o i O Yy-2
Figure 1: General second-order filter for computation of forward transform.
1
- Y(n) B(n + 1) Yo 1 yKk) attimen=N
o > 0 - 0 =0
n=0,1,.,N
| z7 |
2k — N
o Ng @l Ly,
1 zh
1
1% - O Yn_2

Figure 2: Filter for computation of

were derived analytically are obtained from the numer-
ical procedure with simple linear constraints.

A more general approach is to constrain the time-
varying coefficients to be separable in k& and n, i.e.
alk,n) = ay(k)as(n) and B(k,n) = B1(k)B2(n). The
resulting implementation requires 6/N memory loca-
tions to store the filter coefficients, but the equations
are nonlinear and a solution is not guaranteed.

5. SUMMARY

Clenshaw’s recurrence formulae were used to formulate
filter structures for computation of discrete transforms.
The approach provides an efficient structure for VLSI
and/or FPGAs implementation of discrete transforms
by reducing the number of time-varying coefficients.
Known time-invariant filter structures for the discrete
cosine transform (DCT) are special cases of the general
procedure. A new and parallel time-varying structure
to compute the discrete Legendre transform was pre-
sented.

6. REFERENCES

[1] G. Goertzel, “An algorithm for the evaluation of finite
trigonometric series,” Amer. Math. Monthly, vol. 65, pp.
34-35, 1958.

inverse discrete Legendre transform.

[2] J. Canaris, “A VLSI architecture for the real time com-
putation of discrete trigonometric transforms,” J. VLSI
Stgnal Processing, vol. 5, pp. 95-104, 1993.

[3] L.-P. Chau and W.-C. Siu, “Recursive algorithm for the
discrete cosine transform with general length,” FElect.
Lett., vol. 30, pp. 197-198, 1994.

[4] Z. Wang, G.A. Jullien, and W.C. Miller, “Recursive
algorithms for the forward and inverse discrete cosine
transform with arbitrary length,” IEFFE Sig. Proc. Lett.,
vol. 1, no. 7, pp. 101-102, July 1994.

[5] M.F. Aburdene, J. Zheng, R. Kozick, “Computation
of Discrete Cosine Transform Using Clenshaw’s Recur-
rence Formula,” IFEE Sig. Proc. Lett., vol. 2, no. 8, pp.
155-156, August 1995.

[6] K.J. Ray Liu and C.-T. Chiu, “Unified paral-
lel lattice structures for time-recursive discrete co-
sine/sine/Hartley transforms,” ITEEFE Trans. Sig. Proc.,
vol. 41, no. 3, pp. 1357-1363, March 1993.

[7] E. Frantzeskakis, J.S. Baras, K.J. Ray Liu, “Time-
recursive computation and real-time parallel architec-
tures: a framework,” IFEFE Trans. Stg. Proc., vol. 43,
no. 11, pp. 2763-2770, Nov. 1995.

[8] W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery, Numerical Recipes in C: The Art of Scien-
tific Computing, Cambridge, UK: Cambridge University
Press, 1992, 2nd ed.

[9] N. Morrison, Introduction to Sequential Smoothing and
Prediction, New York: McGraw-Hill, 1969.

