
PARALLEL-RECURSIVE FILTER STRUCTURES FOR THE COMPUTATION

OF DISCRETE TRANSFORMS

Richard J. Kozick and Maurice F. Aburdene

Electrical Engineering Department

Bucknell University, Lewisburg, PA 17837

kozick@bucknell.edu

ABSTRACT

A general approach is presented for implementing dis-

crete transforms as a set of �rst-order or second-order

recursive digital �lters. Clenshaw's recurrence formu-

lae are used to formulate the second-order �lters. The

resulting structure is suitable for e�cient implementa-

tion of discrete transforms in VLSI or FPGA circuits.

The general approach is applied to the discrete Legen-

dre transform as an illustration.

1. INTRODUCTION

Parallel-recursive algorithms for the computation of for-

ward and inverse discrete transforms have been studied

recently due to their suitability for e�cient VLSI im-

plementation. Earlier papers have addressed the im-

plementation of the discrete cosine transform (DCT)

and related trigonometric transforms such as the dis-

crete sine transform, discrete Hartley transform, and

discrete Fourier transform [1]-[7]. In this paper, a gen-

eral framework is developed for the design of parallel-

recursive �lter structures for the computation of dis-

crete transforms. Previously-known implementations

for the DCT [5] are time-invariant digital �lters and

follow as special cases of the general structure pre-

sented here. In addition, new parallel and e�cient

time-varying �lter structures are presented for the dis-

crete Legendre transform in which the number of time-

varying �lter coe�cients is minimized.

The forward transform of a set of N +1 real-valued

data points y(0); y(1); : : : ; y(N) is de�ned by

Y (n) =
1

C2
n

NX

k=0

y(k)Pn(k); n = 0; 1; : : : ; N; (1)

and the inverse transform is de�ned by

y(k) =

NX

n=0

Y (n)Pn(k); k = 0; 1; : : : ; N: (2)

In (1) and (2), the Pn(k) are the orthogonal basis vec-

tors for the discrete transformwith
P

N

k=0
Pn(k)Pm(k) =

�mnC
2
n
. The basis vectors are assumed to be orthogo-

nal to facilitate the application to discrete polynomial

transforms in Section 3. However, the methods de-

scribed in Section 4 are applicable to orthogonal as

well as non-orthogonal transforms.

Section 2 describes �rst-order and second-order �l-

ter bank structures for computation of discrete trans-

forms. The �rst-order and second-order �lter imple-

mentations are compared, and Clenshaw's recurrence

formulae are introduced as a tool for designing the

second-order �lters. Section 3 presents an analytical

approach for designing a parallel-recursive implemen-

tation of the inverse transform when the basis vectors

Pn(k) are orthogonal polynomials. Section 4 describes

a numerical procedure for designing parallel-recursive

structures for forward and inverse discrete transforms

for a wide class of basis vectors.

2. GENERAL FILTER STRUCTURES

Any transform can be implemented with �rst-order �l-

ters, but in many cases the second-order �lter imple-

mentation is more e�cient.

2.1. First-Order Filters

A �rst-order di�erence equation that computes the for-

ward transform Y (n) in (1) for a particular n is

�1 = 0

 k = k�1 + Pn(k)y(k); k = 0; : : : ; N (3)

Y (n) = (1=C2
n) N :

A parallel bank ofN+1 �rst-order �lters of the form (3)

are needed to compute the transform values Y (0), : : :,

Y (N) from the data values y(0); : : : ; y(N). Note that

the �lter coe�cients Pn(k) vary with the time index

k. Hence implementation of the �rst-order �lter bank

requires (N + 1)2 memory locations to store the time-

varying coe�cients Pn(k), as well as a total of N + 1

adders, N + 1 multipliers, and N + 1 delay elements.

The memory requirement (N + 1)2 grows rapidly as N

increases. Using a bank of second-order �lters requires

twice as many adders, multipliers, and delay elements,

but in many cases the amount of memory required to

store the time-varying �lter coe�cients is linearly pro-

portional to N . Further, the second-order �lters are

time-invariant for many discrete trigonometric trans-

forms [1]-[7], which greatly simpli�es the implementa-

tion compared with the time-varying �lters in (3). The

remainder of the paper presents an approach for de-

signing second-order �lter banks that are more e�cient

than �rst-order �lter banks for the computation of dis-

crete transforms.

2.2. Second-Order Filters

Clenshaw's recurrence formulae [8] provide a general

approach to deriving a second-order �lter bank for dis-

crete transform computation. As with the �rst-order

�lters in (3), the forward transform is computed by

applying the data points y(0); : : : ; y(N) serially to the

bank of N+1 recursive digital �lters. The transformed

data Y (0); Y (1); : : : ; Y (N) are then available in paral-

lel after N + 1 time steps. The structure of each re-

cursive �lter is identical and will be speci�ed below.

The inverse transform in (2) is computed with a sim-

ilar parallel-recursive architecture, except that the in-

put sequence Y (0); : : : ; Y (N) is applied serially to the

�lter bank, and and the outputs y(0); : : : ; y(N) appear

in parallel after N + 1 time steps.

Clenshaw's recurrence formulae provide a parallel-

recursive algorithm for computing sums of the form

(1) and (2). Clenshaw's recurrence formulae were used

in [5] to develop parallel-recursive implementations for

the discrete cosine transform (DCT). The approach in

[5] relied on trigonometric identities that are available

for the DCT kernel, so the approach in [5] does not

extend in a straightforward manner to other discrete

transforms. A contribution of this paper is the appli-

cation of the Clenshaw recurrence formulae to a large

class of transforms, and in particular to the discrete

Legendre transform (DLT) [9].

Clenshaw's recurrence formulae are applied to the

forward transform in (1) as follows. First, a recurrence

relation is required for the basis vectors of the form

Pn(k + 1) = �(k; n)Pn(k) + �(k; n)Pn(k � 1);

n = 0; 1; : : :; N;

k = 1; 2; : : :; N � 1: (4)

The coe�cients �(k; n) and �(k; n) that satisfy (4) for

a given set of basis vectors fPn(k)g are generally not

unique and can be chosen in many ways, as will be

described in Sections 3 and 4. Once the �(k; n) and

�(k; n) coe�cients are �xed, then a recursive algorithm

for computing Y (n) in (1) is given by [8]

�2 =

�1 = 0

 k =
1

�(k + 1; n)
[k�2 � �(k; n) k�1� y(k)] ;

k = 0; 1; : : : ; N: (5)

The transform value Y (n) = N is computed with the

following de�nitions:

�(N;n) = Any nonzero value, e.g. 1 (6)

�(N;n) = ��(N;n)
Pn(N � 1)

Pn(N)
(7)

�(N + 1; n) = �
C2
n

Pn(N)
: (8)

Figure 1 contains a signal
ow graph for the �lter. In

the event that Pn(N) = 0, then (7) and (8) are not

used, but instead Y (n) is taken at time k = N from

the point in Figure 1 following the ��(N;n) multiplier,

with �(N;n) = �(N;n)Pn(N � 1)=C2
n.

The �lter in Figure 1 has time-varying coe�cients

when �(k; n) or �(k; n) change with the time index k.

If the � and � coe�cients vary independently with k

and n, then 2(N + 1)2 memory locations are needed

for storage and there is no advantage relative to the

�rst-order �lters in (3). As will be shown in Sections 3

and 4, in many cases the �; � values can be chosen to

satisfy the recursion (4) while only requiring memory

of size proportional to N . Note that a bank of N +

1 second-order �lters with the structure in Figure 1

requires 2(N + 1) adders, 2(N + 1) multipliers, and

2(N + 1) delay elements.

A recursive algorithm for the inverse transform in

(2) is formulated using Clenshaw's recurrence formulae

in a similar way. Instead of beginning with the recur-

sion over k as in (4), the inverse transform begins with

a recursion over n of the form

Pn+1(k) = �(n; k)Pn(k) + �(n; k)Pn�1(k);

k = 0; 1; : : : ; N;

n = 1; 2; : : : ; N � 1: (9)

Although we have used the same symbols, the coe�-

cients �; � are generally di�erent in the k-recursion (4)

and the n-recursion (9). Methods for �nding � and �

in (9) are considered in Sections 3 and 4. The recur-

sive algorithm for the inverse transform is identical to

the forward transform, except that the roles of k and

n are interchanged. For example, the algorithm for

computing y(k) with transform values Y (0); : : : ; Y (N)

entering serially is as follows.

�2 =

�1 = 0

 n =
1

�(n + 1; k)
[n�2 � �(n; k) n�1 � Y (n)] ;

n = 0; 1; : : : ; N: (10)

Then y(k) = N with the following de�nitions:

�(N; k) = Any nonzero value, e.g. 1 (11)

�(N; k) = ��(N; k)
PN�1(k)

PN (k)
(12)

�(N + 1; k) = �
1

PN (k)
: (13)

In the event that PN (k) = 0, then (12) and (13) are

not used, but instead y(k) is taken at time n = N from

the point in the �lter following the ��(N; k) multiplier,

with �(N; k) = �(N; k)PN�1(k).

Sections 3 and 4 describe methods for �nding the

�; � coe�cients that satisfy the recurrence relations (4)

and (9) for the basis vectors. Once the �; � coe�cients

are known, then (5) and (10) are the second-order re-

cursive digital �lters that compute the transform.

3. ORTHOGONAL POLYNOMIAL

TRANSFORMS

An analytical approach is available for �nding the coef-

�cients for the n-recursion in (9) when the basis vectors

Pn(0); : : : ; Pn(N) are discrete, orthogonal, nth-order

polynomials. The polynomials can be computed using

the recursive equation

(k�n)Pn(k)�anPn+1(k) = bnPn(k)+cnPn�1(k) (14)

where an is chosen so that the left side of (14) has

degree n and then bn; cn are given by

bn =

NX

k=0

(k � n)Pn(k)Pn(k)

cn =

NX

k=0

(k � n)Pn(k)Pn�1(k):

Comparing (14) with (9), �; � are identi�ed as

�(n; k) =
(k � n)� bn

an

�(n; k) = �(n) = �
cn

an
:

Note that � is independent of k, so it is denoted by

�(n).1 This approach provides closed-form expressions

1At the �nal time step n = N +1, � generally does vary with

k according to (13).

for �(n; k) and �(n) whenever the Pn(k) are orthogonal

polynomials.

For the discrete Legendre polynomials de�ned in

[9], the results are

�(n; k) =
2n+ 1

(n+ 1)(N � n)
(N � 2k) (15)

= �1(n)�2(k)

�(n) = �
n(N + n+ 1)

(n+ 1)(N � n)
(16)

for k = 0; 1; : : : ; N and n = 1; 2; : : :; N�1, with �(N; k),
�(N; k); and �(N + 1; k) de�ned by (11)-(13). Note

that �(n; k) = �1(n)�2(k) is separable in n and k,

and the k-dependence is relatively simple with �2(k) =

N;N � 2; : : : ;�N + 2;�N for k = 0; 1; : : : ; N . Each

�lter for the inverse DLT computation has the form

shown in Figure 2. The set of N + 1 �lters requires

2(N + 1) adders, 3(N + 1) multipliers, and 2(N + 1)

delays. Further, only 4N + 2 memory locations are re-

quired to store the �lter coe�cients, which for large N

is more e�cient than the �rst-order �lter structure.

The forward transform requires a k-recursion of the

form (4). An analytical approach does not seem to be

available that exploits properties of orthogonal poly-

nomials for this case. A general numerical procedure

that is applicable to a wide class of forward and in-

verse discrete transforms is developed in the following

section.

4. GENERAL NUMERICAL PROCEDURE

The �; � coe�cients that satisfy the recursions (4) for

a given set of basis vectors fPn(k)g can be chosen in

many ways. Indeed, (4) contains (N �1)(N +1) linear

equations with 2(N � 1)(N + 1) variables, so a non-

unique solution exists as long as the condition Pn(k +

1) 6= 0 with Pn(k) = Pn(k�1) = 0 is avoided. However,

the second-order implementation is e�cient only if the

time-varying �lter coe�cients can be stored in less than

2(N � 1)(N + 1) memory locations.

One approach for obtaining e�cient second-order

implementations is to constrain the �(k; n); �(k; n) in

some manner, and then solve (4) subject to the con-

straints. One interesting and useful solution of this

type occurs when the Pn(k) are the DCT basis vectors,

and the constraints are �(k; n) = �1. Then the numer-

ical solution of (4) for �(k; n) corresponds exactly with

the time-invariant �lter implementation presented in

[5]. As another application of this procedure, the in-

verse DLT implementation (15),(16) results when the

� are constrained to vary only with n and not with

k. Thus in these two instances, known solutions that

�k

Figure 1: General second–order filter for computation of forward transform.

�k�1

Figure 2: Filter for computation of inverse discrete Legendre transform.

�k�2

1� y(k)

k� 0, 1,��� , N

1
�(k� 1,n)

� �(k, n)

z�1

z�1

Y(n) at time k = N

1

�n

�n�1

�n�2

1� Y(n)

n� 0, 1,��� , N

1
�(n� 1)

�1(n)

z�1

z�1

y(k) at time n = N

1

(2k� N)

were derived analytically are obtained from the numer-

ical procedure with simple linear constraints.

A more general approach is to constrain the time-

varying coe�cients to be separable in k and n, i.e.

�(k; n) = �1(k)�2(n) and �(k; n) = �1(k)�2(n). The

resulting implementation requires 6N memory loca-

tions to store the �lter coe�cients, but the equations

are nonlinear and a solution is not guaranteed.

5. SUMMARY

Clenshaw's recurrence formulae were used to formulate

�lter structures for computation of discrete transforms.

The approach provides an e�cient structure for VLSI

and/or FPGAs implementation of discrete transforms

by reducing the number of time-varying coe�cients.

Known time-invariant �lter structures for the discrete

cosine transform (DCT) are special cases of the general

procedure. A new and parallel time-varying structure

to compute the discrete Legendre transform was pre-

sented.

6. REFERENCES

[1] G. Goertzel, \An algorithm for the evaluation of �nite

trigonometric series," Amer. Math. Monthly, vol. 65, pp.

34-35, 1958.

[2] J. Canaris, \A VLSI architecture for the real time com-

putation of discrete trigonometric transforms," J. VLSI

Signal Processing, vol. 5, pp. 95-104, 1993.

[3] L.-P. Chau and W.-C. Siu, \Recursive algorithm for the

discrete cosine transform with general length," Elect.

Lett., vol. 30, pp. 197-198, 1994.

[4] Z. Wang, G.A. Jullien, and W.C. Miller, \Recursive

algorithms for the forward and inverse discrete cosine

transform with arbitrary length," IEEE Sig. Proc. Lett.,

vol. 1, no. 7, pp. 101-102, July 1994.

[5] M.F. Aburdene, J. Zheng, R. Kozick, \Computation

of Discrete Cosine Transform Using Clenshaw's Recur-

rence Formula," IEEE Sig. Proc. Lett., vol. 2, no. 8, pp.

155-156, August 1995.

[6] K.J. Ray Liu and C.-T. Chiu, \Uni�ed paral-

lel lattice structures for time-recursive discrete co-

sine/sine/Hartley transforms," IEEE Trans. Sig. Proc.,

vol. 41, no. 3, pp. 1357-1363, March 1993.

[7] E. Frantzeskakis, J.S. Baras, K.J. Ray Liu, \Time-

recursive computation and real-time parallel architec-

tures: a framework," IEEE Trans. Sig. Proc., vol. 43,

no. 11, pp. 2763-2770, Nov. 1995.

[8] W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.

Flannery, Numerical Recipes in C: The Art of Scien-

ti�c Computing, Cambridge, UK: Cambridge University

Press, 1992, 2nd ed.

[9] N. Morrison, Introduction to Sequential Smoothing and

Prediction, New York: McGraw-Hill, 1969.

