
BASEFIELD TRANSFORMS DERIVED FROM CHARACTER TABLES

Andreas Klappenecker,� Student Member, IEEE

Universit�at Karlsruhe, Institut f�ur Algorithmen und Kognitive Systeme, Am Fasanengarten 5,
D{76 128 Karlsruhe, Germany; e-mail: klappi@ira.uka.de

ABSTRACT

We show that it is possible to de�ne Hartley-like transforms
for (generalized) character tables of �nite groups. This large
class of transforms include Hartley transforms for discrete
Fourier transforms over abelian groups and Hartley-like
transforms for the discrete cosine transform of type I.

INTRODUCTION

Calculating the Discrete Fourier Transform (DFT) of a real
signal vector usually a�ords complex arithmetic. One can
dispense with the complex arithmetic using the Discrete
Hartley Transform (DHT) to compute the DFT.

Similar ideas can be applied to DFTs over arbitrary �elds.
Typically, computing the DFT of signal vectors over a base-
�eld F amounts to a �eld extension, since in general the
base�eld F does not contain the required roots of unity.
However, it is possible to de�ne Hartley-like transforms
(sharing many properties with the associated DFTs) that
do not require an extension of the base�eld.

Such transforms were �rst introduced in [4] under the
name Algebraic Discrete Fourier Transforms (ADFTs) and
later termed base�eld transforms with convolution property

in [7]. The DFT and corresponding base�eld transforms
over �nite �elds are discussed in [2,4,6].

We give a character theoretic explanation why the ADFT
can be used to compute the DFT. Readers not familiar with
the language of character theory are referred to [8,9]. In our
terminology the previous results [2{7] can be derived from
character tables of �nite cyclic groups over some splitting
�eld. The new transforms proposed here include base�eld
transforms for the DFT over abelian groups and for the
Discrete Cosine Transform (and more).

CHARACTER TABLES

We recall the following facts and notions from representa-
tion theory of �nite groups. Let E be a �eld of characteris-
tic p � 0; V a �nite dimensional vector space over E; and
G a �nite group. A linear representation � is a group ho-
momorphism from G into GL(V ): The representation � is
called irreducible i� 0 and V are the only G-invariant lin-
ear subspaces of V: The character a�orded by � is de�ned
by � :G ! E with �(x) given by the trace tr(�(x)) for all
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x 2 G: The character of an irreducible representation is also
called irreducible. There exists only a �nite number of dif-
ferent irreducible characters �1; � � � ; �n of G over a �eld E:

Note that the irreducible characters �1; � � � ; �n are linearly
independent over E:
It turns out that the characters are constant on certain

classes of group elements of G: We need some more termi-
nology to describe these classes. Let p be a prime or zero.
An element g 2 G is called p-regular, if p is zero or if p does
not divide the order of g: A conjugacy class of p-regular el-
ements is said to be p-regular. Every group element g 2 G

can be written uniquely as g = ab; where a and b are com-
muting elements of G; the order of a is a power of p; and b

is p-regular. Since the traces of �(g) and �(b) are always the
same, it is su�cient to consider the values of the characters
on the p-regular classes. Note that the value of a character
is constant on every p-regular class.
The characters are constant on even large classes of group

elements, provided E is not a splitting �eld of G: Denote by
m the least common multiple of the orders of the p-regular
elements of G: Let ! be a primitive mth root of unity over
E: Two p-regular elements g and h of G are E-conjugate, if
there exists some group element x 2 G such that xgx�1 =
h� ; where � is some integer modulo m of the set f � j�! =
!� for � 2 Gal (E(!)=E) g: The characters are constant on
the E-conjugacy classes of p-regular elements C1; : : : ; Cr : It
was proved by Witt and Berman that the number of classes
Ci and the number of irreducible characters �i coincide.
We de�ne the (invertible) transform matrix X as the

(generalized) character table:

X = (�i(Cj))i;j=1;::: ;r :

In the next section we develop the conjugacy properties of
these transforms.

CONJUGACY PROPERTIES

Assume that our signals v take values in a base�eld F; a sub-
�eld of E: Exact computation of the vector-matrix-product
vX a�ords computations in the �eld K obtained from F by
adjoining the matrix entries of X: The value of a character
is the sum of nth roots of unity, where n is a certain divisor
of jGj: Therefore, the �eld extension K=F is normal. The
Galois group Gal (K=F ) acts on the character table by row

permutation, since a Galois automorphism maps an irre-
ducible character again onto an irreducible character. More-
over, since a Galois automorphism � 2 Gal (K=F ) maps the



primitive nth root of unity ! onto a certain power !k ; the
value of �(�(g)) can also be expressed by �(gk): This means
that the Galois group also acts on the character table by
column permutation.

BASEFIELD TRANSFORMS

In this section we introduce the base�eld transforms as-
sociated to character tables and collect several important
properties of these transforms. Roughly speaking, these
transforms are obtained by projecting the matrix entries of
the character table X onto values of the base�eld F:

The elements of K can be expressed with respect to a
basis B = (b1; � � � ; bs) of the �eld extension K=F: Given an
element x =

Ps

i=1 xi bi of K; with xi 2 F; we de�ne the

projection on the kth component of the basis B by PB
k x =

xk: Clearly, we can interchange permutation operations on
the matrix X with the projection operator PB

k ; since PB
k

operates independently on each matrix entry.

We already noted that the Galois automorphisms of
Gal (K=F ) act on a character table X by row or column per-
mutation. The permutation action of the Galois group on
the character table induces a permutation action on PB

k X:

More precisely, there exist permutation representations �L
and �R of Gal (K=F ) such that the relations

�L(�)(P
B
k X) = P

B
k

�
X and (PB

k X)�R(�) = P
B
k

�
X

hold for all � 2 Gal (K=F ) :
The operation of the Galois group Gal (K=F ) is par-

ticularly transparent, if the elements of K are expressed
with respect to a normal basis B: Such a basis1 is
given by the Galois orbit of some element k of the
�eld K; that is, B = (�1k; � � � ; �sk): Normal bases have
the feature that the projections on the di�erent com-
ponents

�
PB
k (X) jk = 1; : : : ; r

	
coincide with the projec-

tions of the conjugate matrices �X on a �xed component�
PB
k (�X) j� 2 Gal (K=F )

	
: We already observed that the

elements of the latter set are nothing but permuted versions
of a single projection, namely they coincide with the set�
�L(�)P

B
k (X) j� 2 Gal (K=F )

	
or alternatively with the

set
�
PB
k (X)�R(�) j� 2 Gal (K=F )

	
:

To summarize, consider the product of a signal vector
v over the base�eld F with the character table X: If we
express the result with respect to a normal base B; then
vX is given by the r di�erent vectors vPB

1 (X); : : : ; vPB
r (X):

Instead of computing r di�erent vector-matrix products,
it is possible to compute a single vector matrix product
vPB

k (X); since the other components are simply obtained
by permutation of this result: vPB

m = vPB
k (X)�R(�m) for

some �m 2 Gal (K=F ) : Clearly, this leads to considerable
savings.

We call PB
k X a base�eld transform for X with respect to

the normal basis B: The inverse transforms are derived in
the next section.

INVERSE TRANSFORMS

The irreducible characters of a �nite group satisfy certain
orthogonality relations, which allow an explicit formulation

1A normal basis exists, since K=F is Galois.

of the inverse of a character table. We assume in this section
that the �eld E is a splitting �eld for G of characteristic not
dividing the order of the group G:

Denote by C1; : : : ; Cr the conjugacy classes of G and let
gi be a representative of Ci: The character table is given by
the matrix X = (�i(gj))i;j=1;::: ;r: The inverse of X is then
given by X�1 = jGj�1(jCij�j(g�1

i ) ); cf. [1].

We now derive an explicit inverse for the corresponding
base�eld transforms of X. Let F be the base�eld and K the
extension �eld of F obtained by adjoining the matrix en-
tries of X: We already observed that K=F is a �nite Galois
extension, meaning in particular that there exists a normal
basis B = (b1; : : : ; bs) for K=F: Moreover, there exists an-
other normal basis C = (c1; : : : ; cs) which is dual in the
sense that trK=F (ci bj) = �ij holds. We claim that the in-

verse of PB
k (X) is given by PC

k (X
�1):

We prove this claim by calculating the matrix product
PB(X)PC(X�1): We remark here �rst that the projection
operator PB

k (x) can be written with the help of the dual
basis C as trK=F (ckx): Using this we obtain for the matrix

entry Yij :=
�
PB
k (X)PC

k (X
�1)
�
ij
the following expression:

Yij =
1

jGj
rX

e=1

tr(ck�i(ge)) jCej tr(bk�j(g�1
e ))

=
1

jGj
X
g2G

tr(ck�i(g)) tr(bk �j(g
�1) ):

Writing out the trace forms and reordering the sums gives

1

jGj
X

�;�2Gal(K=F )

 X
g2G

�(�i(g))�(�j(g
�1))

!
| {z }

S:=

(�ck)(�bk):

As a consequence of the orthogonality relations of charac-
ters, the inner sum S is di�erent from zero only if ��i is
the same character as ��j ; in that case S equals jGj:
Consequently, if �i is conjugate to �j; say �j = ��i for

some � 2 Gal (K=F ) ; then

h
P
B
k (X)PC

k (X
�1)
i
ij
=

X
�;�2Gal(K=F )

��1�=�

(�ck)(�bk):

This last sum can be simpli�ed to

X
�2Gal(K=F )

(��ck)(�bk) = tr((�ck)bk):

Since C and B are dual bases, the trace expression
tr((�ck)bk) is non-zero only if � is the identity; in that case
we have by de�nition tr(ckbk) = 1: We observe further that
in the case � = id the characters �i and �j have to be
identical to give some non-zero sum S: Thereby we obtain

h
P
B
k (X)PC

k (X
�1
)
i
ij
= �ij ;

which proves our claim.



A CLASSICAL EXAMPLE: THE DISCRETE

HARTLEY TRANSFORM

The character table of the cyclic groupZ=NZover the com-
plex numbers is given by

X = (exp(2�i kl=N))
k;l=0;::: ;N�1

;

which is nothing but the DFT of length N: Consider the
base�eld F = R of real numbers, then a normal basis for
the extension C=R is given by B = ((1 + i)=2; (1 � i)=2):
Rewriting X as (cos(2�kl=N)+ i sin(2�kl=N)); the DHT of
length N is obtained by (see also [3,7]):

PB
1 X =

 
cos(2�kl=N) + sin(2�kl=N)

!
k;l=0;:::;N�1

:

We get the projection on the second component PB
2 X by

permuting PB
1 X with � : x 7! �x mod N: Clearly, this re-


ects the conjugacy property of the DFT.
The Discrete Hartley Transform can be viewed as a sim-

ple example of the base�eld transforms considered in this
paper.

ADFT OVER ABELIAN GROUPS

Let G be an abelian group. Recall that a �nite abelian
group is isomorphic to a direct product of cyclic groups.
The complex irreducible characters of a direct product
G = H1�H2 can be expressed with the help of the complex
characters of H1 and H2: Namely, any irreducible charac-
ter � of G is obtained from irreducible characters �1; �2

of the groups H1 and H2 (resp.) by means of a product
�(h1; h2) = �1(h1)�2(h2): Therefore, the complex charac-
ter table of an abelian group G is a Kronecker product of
DFTs.
For example, the character table of the group G =

Z=3Z�Z=3Zis simply the Kronecker product of two DFTs
of length three: X = DFT3 
 DFT3: If our signals are
rational vectors of length nine, then a vector-matrix prod-
uct vX would require an extension to the �eld Q(!); where
! = exp(2�i=3): A normal base for the extension Q(!)=Q
is given by B = (�!;�!2); since

�! =
1

2
� 1

2
i
p
3; �!2 =

1

2
+

1

2
i
p
3:

Hence, the ADFT or base�eld transform PB
1 (X) is given by

the following matrix:

0
BBBBBBBBBBB@

1 1 1 1 1 1 1 1 1
1 �1 0 1 �1 0 1 �1 0
1 0 �1 1 0 �1 1 0 �1
1 1 1 �1 �1 �1 0 0 0
1 �1 0 �1 0 1 0 1 �1
1 0 �1 �1 1 0 0 �1 1
1 1 1 0 0 0 �1 �1 �1
1 �1 0 0 1 �1 �1 0 1
1 0 �1 0 �1 1 �1 1 0

1
CCCCCCCCCCCA
:

An advantage of ADFTs is that they can be realized
with simple arithmetic (the example shown here completely
avoids any multiplications).

BASEFIELD TRANSFORMS FOR THE DCT

Let G = ha ja2n = 1i be the cyclic group of order 2n:
The C -irreducible characters of this group are given by
X1 = (�k(a

l))k;l=0;::: ;2n�1; where �k(a
l) = exp(2�i kl=2n):

We want to derive theR-irreducible characters of this group.
In general, each R-irreducible character can be obtained
from some C -irreducible character � by an expression of
the form

mR (�)
X

�2Gal(R(�)=R )

�
�;

where mR (�) is a positive integer { the so-called Schur in-
dex. It is known that the Schur index divides �(1): There-
fore, we get mR (�) = 1; since G is abelian. It remains to
determine the real-valued C -irreducible characters. Aside
from the trivial character �(al) = 1; there exists only one
non-trivial real character, namely �n(a

l) = exp(�i l): Con-
sequently, we obtain the real character table for G :

X2 = (vk2 cos(�k l=n))k;l=0;::: ;n ;

where vk = 1 except for k = 0 and k = n; where vk =
1=2: The character table X2 is the transform matrix for the
DCT-I.2

More concretely, consider the cyclic group of order 10.
The real character table X2 for this group is given by the
matrix:

1

2

0
BBBBBBBBB@

2 2 2 2 2 2

4
p
5 + 1

p
5 � 1 �

p
5 + 1 �

p
5� 1 �4

4
p
5� 1 �

p
5 � 1 �

p
5� 1

p
5� 1 4

4 �
p
5 + 1 �

p
5 � 1

p
5 + 1

p
5� 1 �4

4 �
p
5� 1

p
5 � 1

p
5� 1 �

p
5� 1 4

2 �2 2 �2 2 �2

1
CCCCCCCCCA

Assume that our signals are rational vectors, i. e., F = Q:
Adjoining the matrix entries of X2 to F gives the quadratic
extension �eld K = Q(

p
5): A normal basis for K=F is for

example given by B := 1=2
�p

5� 1;�p5� 1
�
: The pro-

jection PB
1 (X2) with respect to this basis is:

P
B
1 (X) =

0
BBBBBBBBBBB@

�1 �1 �1 �1 �1 �1
�2 0 1 �1 0 2

�2 1 0 0 1 �2
�2 �1 0 0 1 2

�2 0 1 1 0 �2
�1 1 �1 1 �1 1

1
CCCCCCCCCCCA

We obtain the projection on the second component by per-

2The reader may be more familiar with the DCT-I obtained

by the following base change: pDX2D
�1; where D is the diag-

onal matrix D = diag(1;1=
p
2; : : : ; 1=

p
2; 1) and p is a prefactor

1=
p
2n:



muting the columns with � = (24)(35) :

P
B
2 (X) =

0
BBBBBBBBBBB@

�1 �1 �1 �1 �1 �1
�2 �1 0 0 1 2

�2 0 1 1 0 �2
�2 0 1 �1 0 2

�2 1 0 0 1 �2
�1 1 �1 1 �1 1

1
CCCCCCCCCCCA

CONCLUSION

We outlined a general theory of base�eld transforms for
generalized character tables. It should be noted that these
transforms have a convolution property, provided that they
are derived from character tables of �nite abelian groups
over splitting �elds of characteristic coprime to the group
order. Avoiding �eld extensions is particularly attractive
for integrated circuit implementations. We demonstrated
this in [5] for the classical ADFT.

ACKNOWLEDGEMENT

It is a pleasure to thank Professor Thomas Beth for intro-
ducing me to the Algebraic Discrete Fourier Transform.

REFERENCES

[1] M. Aschbacher. Finite group theory. Cambridge Uni-
versity Press, 1986. Corr. Reprint 1994.

[2] T. Beth. Verfahren der schnellen Fourier-Transforma-

tion. Teubner-Verlag, 1984.

[3] T. Beth. Generating Fast Hartley Transforms { another
application of the Algebraic Discrete Fourier Transform.
In Proceedings URSI-ISSSE `89, Erlangen, Deutschland,
pages 688{692, 1989.

[4] T. Beth, W. Fumy, and R. M�uhlfeld. Zur Algebrais-
chen Diskreten Fourier-Transformation. Arch. Math.,
40:238{244, 1983.

[5] T. Beth, A. Klappenecker, T. Minkwitz, and A. N�uckel.
The ART behind IDEAS. In Computer Science Today,
volume LNCS 1000, pages 141{158. Springer Verlag,
1995.

[6] J. Hong and M. Vetterli. Hartley transforms over �nite
�elds. IEEE Trans. on Information Theory, 39(5):1628{
1638, 1993.

[7] J. Hong, M. Vetterli, and P. Duhamel. Base�eld trans-
forms with the convolution property. Proc. of the IEEE,
82(3):400{412, 1994.

[8] G. Karpilovsky. Group representations, volume I, part
B. North-Holland, 1992.

[9] J.-P. Serre. Linear Representations of Finite Groups.
Springer-Verlag, 1977.


