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ABSTRACT

We show that it is possible to define Hartley-like transforms
for (generalized) character tables of finite groups. This large
class of transforms include Hartley transforms for discrete
Fourier transforms over abelian groups and Hartley-like
transforms for the discrete cosine transform of type I.

INTRODUCTION

Calculating the Discrete Fourier Transform (DFT) of a real
signal vector usually affords complex arithmetic. One can
dispense with the complex arithmetic using the Discrete
Hartley Transform (DHT) to compute the DFT.

Similar ideas can be applied to DFT's over arbitrary fields.
Typically, computing the DFT of signal vectors over a base-
field F' amounts to a field extension, since in general the
basefield F' does not contain the required roots of unity.
However, it 1s possible to define Hartley-like transforms
(sharing many properties with the associated DFTs) that
do not require an extension of the basefield.

Such transforms were first introduced in [4] under the
name Algebraic Discrete Fourier Transforms (ADFTs) and
later termed basefield transforms with convolution property
in [7]. The DFT and corresponding basefield transforms
over finite fields are discussed in [2,4,6].

We give a character theoretic explanation why the ADFT
can be used to compute the DFT. Readers not familiar with
the language of character theory are referred to [8,9]. In our
terminology the previous results [2-7] can be derived from
character tables of finite cyclic groups over some splitting
field. The new transforms proposed here include basefield
transforms for the DFT over abelian groups and for the
Discrete Cosine Transform (and more).

CHARACTER TABLES

We recall the following facts and notions from representa-
tion theory of finite groups. Let E be a field of characteris-
tic p > 0, V a finite dimensional vector space over F, and
G a finite group. A linear representation p is a group ho-
momorphism from G into GL(V'). The representation p is
called irreducible iff 0 and V' are the only G-invariant lin-
ear subspaces of V. The character afforded by p is defined
by x:G — E with x(z) given by the trace tr(p(z)) for all
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x € (. The character of an irreducible representation is also
called irreducible. There exists only a finite number of dif-
ferent irreducible characters yi,---, xn of G over a field F.
Note that the irreducible characters x1,-- -, xn are linearly
independent over E.

It turns out that the characters are constant on certain
classes of group elements of G. We need some more termi-
nology to describe these classes. Let p be a prime or zero.
An element g € G is called p-regular, if p is zero or if p does
not divide the order of g. A conjugacy class of p-regular el-
ements is said to be p-regular. Every group element g € G
can be written uniquely as g = ab, where a and b are com-
muting elements of GG, the order of a is a power of p, and b
is p-regular. Since the traces of p(g) and p(b) are always the
same, it is sufficient to consider the values of the characters
on the p-regular classes. Note that the value of a character
is constant on every p-regular class.

The characters are constant on even large classes of group
elements, provided F is not a splitting field of G. Denote by
m the least common multiple of the orders of the p-regular
elements of GG. Let w be a primitive mth root of unity over
E. Two p-regular elements g and h of G are E-conjugate, if
there exists some group element & € G such that zgz~! =
k¥, where v is some integer modulo m of the set {v|ow =
w” for o € Gal (E(w)/E) }. The characters are constant on
the F-conjugacy classes of p-regular elements C1,...,C.. [t
was proved by Witt and Berman that the number of classes
C; and the number of irreducible characters y; coincide.

We define the (invertible) transform matrix X as the
(generalized) character table:

X = (Xi(cﬂ))i,jzl,...,r :

In the next section we develop the conjugacy properties of
these transforms.

CONJUGACY PROPERTIES

Assume that our signals v take values in a basefield F| a sub-
field of F. Exact computation of the vector-matrix-product
v.X affords computations in the field K obtained from F' by
adjoining the matrix entries of X. The value of a character
is the sum of nth roots of unity, where n is a certain divisor
of |G|. Therefore, the field extension K/F is normal. The
Galois group Gal (//F') acts on the character table by row
permutation, since a Galois automorphism maps an irre-
ducible character again onto an irreducible character. More-
over, since a Galois automorphism o € Gal (K/F') maps the



primitive nth root of unity w onto a certain power w®, the
value of ¢(x(g)) can also be expressed by x(g*). This means
that the Galois group also acts on the character table by
column permutation.

BASEFIELD TRANSFORMS

In this section we introduce the basefield transforms as-
sociated to character tables and collect several important
properties of these transforms. Roughly speaking, these
transforms are obtained by projecting the matrix entries of
the character table X onto values of the basefield F.

The elements of K can be expressed with respect to a
basis B = (b1, --,b.) of the field extension K /F. Given an
element z = Zle x; b; of K, with x; € F, we define the
projection on the kth component of the basis B by PPz =
zg. Clearly, we can interchange permutation operations on
the matrix X with the projection operator P?, since PP
operates independently on each matrix entry.

We already noted that the Galois automorphisms of
Gal (/{/F') act on a character table X by row or column per-
mutation. The permutation action of the Galois group on
the character table induces a permutation action on P X.
More precisely, there exist permutation representations pr,
and pr of Gal (K/F') such that the relations
pr()PPX)=PP°X and  (PPX)pr(o)=PP°X
hold for all o € Gal (K/F).

The operation of the Galois group Gal (//F) is par-
ticularly transparent, if the elements of K are expressed
with respect to a normal basis B. Such a basis® is
given by the Galois orbit of some element k& of the
field K, that is, B = (o1k,--,0.k). Normal bases have
the feature that the projections on the different com-
ponents {PE (X)|k=1,..., r} coincide with the projec-
tions of the conjugate matrices °X on a fixed component
{PP(°X)|o € Gal (K/F)}. We already observed that the
elements of the latter set are nothing but permuted versions
of a single projection, namely they coincide with the set
{pr(o)PP ( J|o € Gal (K/F)} or alternatively with the
set {P2(X)pr(o)|o € Gal(K/F)}.

To summalrize7 consider the product of a signal vector
v over the basefield F' with the character table X. If we
express the result with respect to a normal base B, then
vX is given by the r different vectors v PE(X),...,vPF(X).
Instead of computing r different vector-matrix products,
it is possible to compute a single vector matrix product
UPE(X)7 since the other components are simply obtained
by permutation of this result: vPE = v PP (X)pr(om) for
some oy, € Gal(K/F). Clearly, this leads to considerable
savings.

We call PP X a basefield transform for X with respect to
the normal basis B. The inverse transforms are derived in
the next section.

INVERSE TRANSFORMS

The irreducible characters of a finite group satisfy certain
orthogonality relations, which allow an explicit formulation

1A normal basis exists, since K/F is Galois.

of the inverse of a character table. We assume in this section
that the field £ is a splitting field for G of characteristic not
dividing the order of the group G.

Denote by Ci,...,C, the conjugacy classes of G and let
g: be a representative of C;. The character table is given by
the matrix X = (xi(g;))ij=1,...,r- The inverse of X is then
given by X~ = |G|7Y(|Ci| x;(g7)), cf. [1].

We now derive an explicit inverse for the corresponding
basefield transforms of X. Let F' be the basefield and K the
extension field of F' obtained by adjoining the matrix en-
tries of X. We already observed that K /F is a finite Galois
extension, meaning in particular that there exists a normal
basis B = (by,...,bs) for K/F. Moreover, there exists an-
other normal basis ¢ = (ci1,...,cs) which is dual in the
sense that trI\/F(c, ;) = &;; holds. We claim that the in-
verse of PZ(X) is given by P (X™1).

We prove this claim by calculating the matrix product
PE(X)PY(X ™). We remark here first that the projection
operator PE(z) can be written with the help of the dual
basis C as tryp(crx). Using this we obtain for the matrix
[PF(X)PE(X1],

entry Y;; := the following expression:

Yi; = |G| Ztr (cxi(ge)) [Ce] tr(brx; (921))

= Ztr crxi(g)) tr(br x;5(g 1))

gGG

Writing out the trace forms and reordering the sums gives

ﬁ > (Z o(xi(9))7(x; (9_1))> (ock)(Th).

o, 7€EGal(K/F) \geG

Si=

As a consequence of the orthogonality relations of charac-

ters, the inner sum S is different from zero only if oy; is

the same character as 7x;; in that case S equals |G]|.
Consequently, if y; is conjugate to x;, say x; = wy;: for

some & € Gal (K/F), then

[PPOOPEET] = 3 (een)(rhe).

Y o reGal(K/F)

r~lo=k

This last sum can be simplified to

Z (Trer)(Thr)

TEGal(K/F)

= tr((kck )bx).

Since €' and B are dual bases, the trace expression
tr((kck )by ) is non-zero only if k is the identity; in that case
we have by definition tr(cibx) = 1. We observe further that
in the case k = d the characters x; and x; have to be
identical to give some non-zero sum S. Thereby we obtain

[PEXPE(T] = a,

)

which proves our claim.



A CLASSICAL EXAMPLE: THE DISCRETE
HARTLEY TRANSFORM

The character table of the cyclic group Z/NZ over the com-
plex numbers is given by
X = (exp(2m kl/N))k,z=o,...,N—1 )

which is nothing but the DFT of length N. Consider the
basefield F' = R of real numbers, then a normal basis for
the extension C/R is given by B = ((1 4+14)/2,(1 —i)/2).
Rewriting X as (cos(2wkl/N) + isin(27kl/N)), the DHT of
length N is obtained by (see also [3,7]):

PPX = (cos(27rkl/N) + sin(27rkl/N)>

k,=0,...,N—1

We get the projection on the second component PEX by
permuting PZX with o :2 — —2 mod N. Clearly, this re-
flects the conjugacy property of the DFT.

The Discrete Hartley Transform can be viewed as a sim-
ple example of the basefield transforms considered in this

paper.
ADFT OVER ABELIAN GROUPS

Let G be an abelian group. Recall that a finite abelian
group is isomorphic to a direct product of cyclic groups.
The complex irreducible characters of a direct product
GG = H; x H> can be expressed with the help of the complex
characters of H; and Hz. Namely, any irreducible charac-
ter y of GG is obtained from irreducible characters xi, x2
of the groups H; and H (resp.) by means of a product
X(h1,h2) = x1(h1)xz2(h2). Therefore, the complex charac-
ter table of an abelian group G is a Kronecker product of
DFTs.

For example, the character table of the group G =
Z[3Z x 7./ 37 is simply the Kronecker product of two DFTs
of length three: X = DFT1:; @ DFT5. If our signals are
rational vectors of length nine, then a vector-matrix prod-
uct vX would require an extension to the field Q (w), where
w = exp(2m1/3). A normal base for the extension Q(w)/Q

1. 1 1.
— 51 37 —w2 = 5 + 51\/5

Hence, the ADFT or basefield transform P{#(X) is given by

the following matrix:

1 1 1 1 1 1 1 1 1
1 -1 0 1 -1 0 1 -1 0
1 0 -1 1 0 -1 1 0 -1
1 1 1 -1 -1 -1 0 0 0
1 -1 0 -1 0 1 0 1 -1
1 0 -1 -1 1 0 0 -1 1
1 1 1 0 0 0o -1 -1 -1
1 -1 0 0 1 -1 -1 0 1
1 0 -1 0 -1 1 -1 1 0

An advantage of ADFTs is that they can be realized
with simple arithmetic (the example shown here completely
avoids any multiplications).

BASEFIELD TRANSFORMS FOR THE DCT

Let G = {a]a®™ = 1) be the cyclic group of order 2n.
The Cirreducible characters of this group are given by
X, = (Xk(al))k,l=o,...,2n_1, where Xk(al) = exp(2mi kl/2n).
We want to derive the R-irreducible characters of this group.
In general, each R-irreducible character can be obtained
from some (C-irreducible character y by an expression of

the form
>
c€Gal(R(x) /R)

me(x)

where mpg(x) is a positive integer — the so-called Schur in-
dex. It is known that the Schur index divides y(1). There-
fore, we get mp(x) = 1, since G is abelian. It remains to
determine the real-valued C-irreducible characters. Aside
from the trivial character X(al) = 1, there exists only one
non-trivial real character, namely xn(a') = exp(mil). Con-
sequently, we obtain the real character table for G :

X2 = (v2 cos(rk l/"))k,l:o,...,n )
where vy = 1 except for Kk = 0 and k& = n, where vy =
1/2. The character table X> is the transform matrix for the
DCT-1.2

More concretely, consider the cyclic group of order 10.
The real character table X» for this group is given by the
matrix:

2 2 2 2 2 2
4 VE+1 VE—1 —54+1 —/5-1 -4
1 4 VE-1 —/5-1 —/5-1 V5 -1 4
2 4 /541 —/5-1 VE41 VE—1 —4
4 —/5-1 VE—1 VE—1 —5-1 4
2 -2 2 -2 2 -2

Assume that our signals are rational vectors, i.e., F' = Q.
Adjoining the matrix entries of X2 to F' gives the quadratic
extension field K = Q(v/5). A normal basis for K/F is for
example given by B := 1/2 (\/5_ 1, -5 — 1) . The pro-
jection PP(X5) with respect to this basis is:

-1 -1 -1 -1 -1 -1
-2 0 1 -1 0 2

-1 1 -1 1 -1 1

We obtain the projection on the second component by per-

2The reader may be more familiar with the DCT-I obtained
by the following base change: pDX>D~!, where D is the diag-
onal matrix D = diag(1, 1/V2,...,1//2, 1) and p is a prefactor
1/V/2n.



muting the columns with o = (24)(35) :

P (X) =

o O

-1 1 -1 1 -1 1

CONCLUSION

We outlined a general theory of basefield transforms for
generalized character tables. It should be noted that these
transforms have a convolution property, provided that they
are derived from character tables of finite abelian groups
over splitting fields of characteristic coprime to the group
order. Avoiding field extensions is particularly attractive
for integrated circuit implementations. We demonstrated

this in [5] for the classical ADFT.
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