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ABSTRACT

The discrete cosine transform (DCT) has a variety of ap-
plications in image and speech processing. The idea of the
subband{DFT (SB{DFT) [1], [2] is applied in [3] to the
DCT. In this paper the basic idea of the SB{DCT is dis-
cussed which is based on subband decomposition of the
input sequence. Approximation is done by discarding the
computations of bands of little energy. The complexity of
this fast approximate method is examined in comparing it
with a fast cosine{transform method [4] in terms of pro-
gram running-time. New accurate analysis of the errors
due to the approximation is presented for any number of
decomposition stages. New applications of the SB{DCT in
speech cepstrum analysis and in echo detection are also in-
cluded by using the SB{DCT instead of the full{band FFT
in calculating the real and complex cepstra.

1. INTRODUCTION

The DCT of an N{point sequence x(n), with n 2 f0; 1; :::; N�
1g is de�ned as:

C(k) =

N�1X

n=0

2x(n) cos(
�k(2n+ 1)

2N
) k 2 f0; 1; :::; N � 1g

(1)
A fast cosine{transform given by Makhoul [4] can be com-
puted for an N{point real signal by an N{point DFT of
a reordered version of the original signal according to the
following procedure:

1. Compute v(n) from x(n) using:

v(n) = x(2n) 0 � n � [
N � 1

2
]

= x(2N � 2n� 1) [
N + 1

2
] � n � N � 1

(2)

where [a] denotes integer part of a.

2. Find the DFT V (k) of v(n).

3. Multiply V (k) with 2 exp(�j�k
2N

).

4. Find the real part of the result of the above step.

For the purpose of image coding the SB{DCT is intro-
duced in [3]. In the SB{DCT the original signal is decom-
posed into two frequency{bands. Depending on the signal
and the application, it may be acceptable to calculate only
a band of adjacent points approximately but with a higher
speed. The paper is organized as follows:
In the next section the idea of the SB{DCT is introduced
with its error analysis and computational complexity. Sec-
tion 3 presents two new applications of the subband{DCT
in speech cepstrum analysis and echo detection. Conclud-
ing remarks are given in section 4.

2. SUBBAND{DCT

2.1. Basic{Idea

In Fig.1 the length{N data sequence x(n) is decomposed
into two subsequences of length N=2:

g(n) = 1=2[x(2n) + x(2n+ 1)]

h(n) = 1=2[x(2n) � x(2n+ 1)]; (3)

where g(n) and h(n) are the down{sampled versions of the
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Figure 1: Two{band decomposition of the subband DCT

low{pass �ltered sequence a(n) and the high{pass �ltered
sequence b(n) respectively. Eq.(1) can be written as

C(k) =

N=2�1X

n=0

2x(2n) cos(�k(4n+ 1)=(2N))

+

N=2�1X

n=0

2x(2n+ 1) cos(�k(4n+ 3)=(2N)):

(4)



With a simple mathematical reformulation and with the aid
of Eqs.(3) and (4) this becomes:

C(k) = 2 cos(�k=(2N))

N=2�1X

n=0

2g(n) cos(�k(2n+ 1)=N)

+ 2 sin(�k=(2N))

N=2�1X

n=0

2h(n) sin(�k(2n+ 1)=N)

(5)

or:

C(k) = 2 cos(�k=(2N))Cg(k) + 2 sin(�k=(2N))Sh(k); (6)

where Cg(k) and Sh(k) are the N=2{point DCT and DST
of g(n) and h(n) respectively.
Eq.(6) can be approximated by calculating only the �rst
term :

Ĉ(k) = 2 cos(
�k

2N
)Cg(k) k 2 f0; 1; :::;

N

2
� 1g: (7)

The decomposition process can be also repeated to the se-
quence g(n) in Eq.(3) to decompose it into two further
bands, and the same procedure can be followed to get

Ĉ(k) = 4 cos(
�k

2N
) cos(

�k

N
)Cgg(k) k 2 f0; 1; :::;

N

4
� 1g;

(8)
where Cgg(k) is the discrete cosine transform of the low{low
frequency band. The two partial DCTs Cg(k) and Cgg(k)
can be calculated from the respective sub{sequences using
the fast cosine{transform procedure given by [4].

2.2. Approximation Errors

Repeating the decomposition m times results in M = 2m

subbands. Two main types of errors appear during the ap-
proximation: linear distortions and aliasing. These approx-
imation errors depend on the input signal and the number
and type of decompositions. Combining the two Eqs.(6,7)
and by relating Sh(k) with C(N � k), we obtain:

2Ĉ(k)

cos( �k
2N

)
= C(k)�

cos(
�(N�k)

2N
)

cos( �k
2N

)
C(N � k): (9)

The left{hand side of this equation which will be denoted
Ĉc(k), is the approximated transform after a compensation
of the linear distortion. The second term in the right{hand
side is due to the aliasing error created by non{zero trans-
form points C(N � k). For m = 2 decomposition stages,
we obtain:

Ĉc(k) = B1C(k) +B2C(N � k)

+ B3C(
N

2
� k) +B4C(

N

2
+ k) (10)

For N = 16 and m = 2 and if only the �rst band is calcu-
lated, Table 1 shows the aliasing e�ects of points C(N �k)
and C(N

2
�k) and C(N

2
+k) on points C(k), assuming that

the ratio of the transform points causing aliasing to the true
components in the calcualted band is �xed to 0:1.

Calculated E�ect of E�ect of E�ect of

Points C(N � k) C(N
2
� k) C(N

2
+ k)

C(0) 0 0 0

C(1) �0:0098 �0:0155 +0:0127

C(2) �0:0199 �0:0351 +0:0235

C(3) �0:0303 �0:0616 +0:0329

Table 1: Aliasing e�ects of other bands on the calculated
band for N = 16 and M = 4

In general, For M subbands, there are M � 1 aliasing
terms that are uniformly distributed on the frequency axis
with respect to the middle point N=2. For M = 8, Eq.10
becomes:

Ĉc(k) = B1C(k) +B2C(N � k)

+ B3C(
N

2
� k) +B4C(

N

2
+ k)

+ B5C(
N

4
� k) +B6C(

N

4
+ k) (11)

+ B7C(
3N

4
� k) +B8C(

3N

4
+ k):

The coe�cients Bj of Eq.(11), which are multiplied by
the transform points C(l), are shown for m decomposition
stages to be

Bj = s(j)

i=mY

i=1

(cos(�il=(2N))= cos(�ik=(2N))); (12)

where

s(j) = 1 j �
M

2

= �1 j >
M

2
: (13)

Fig.2 illustrates the normalized aliasing error E(k)=e, for
N = 128 and di�erent values of m, where only the low{
pass branch is followed in all reduction stages and under
the assumption of small components with equal amplitudes
e outside the band of interest.

2.3. Computational Complexity

In [3] the complexity of the half{band SB{DCT (M=2) is
studied in terms of the number of operations (additions and
multiplications). In this section the complexity of the gen-
eral narrow{band SB{DCT is examined by comparing it
with a fast exact full{band DCT due to Makhoul[4]. Fig.3
shows the execution time in msec versus the number of de-
composition stages m for four di�erent numbers N of total
input points. The execution{time values corresponding to
m = 0 are the required times of running the full{band fast
cosine{transforms of length N using the algorithm in [4].
The number of the calculated points is ( N

M
= N

2m
). The

running{time measurements are done using a 486 proces-
sor with 66 MHz.
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Figure 2: Normalized aliasing error for di�erent number of
stages

3. APPLICATIONS

The DFT{based real and complex cepstrum (RFC and
CFC) of a signal x are de�ned as:

RFC = Real(IFFT (ln(Abs(FFT (x)))));

CFC = Real(IFFT (ln(FFT (x)))): (14)

In [6], it is shown that using the DCT instead of the FFT
does not degrade the information contained in the cepstrum
while substantially reducing the computational complexity,
so the DCT{based real and complex cepstra (termed RCC
and CCC, respectively) according to [6] are

RCC = Real(IDCT (ln(Abs(DCT (x)))));

CCC = Real(IDCT (ln(DCT (x)))): (15)

In this work the SB{DCT is used instead of the full{band
DCT in computation of both the real DCT{based cepstrum
and the complex DCT{based cepstrum. So Eq.(15) can be
changed to

RSCC = Real(IDCT (ln(Abs(SB�DCT (x)))));

CSCC = Real(IDCT (ln(SB�DCT (x)))): (16)

Comparing the last equation with the corresponding DCT{
based cepstrum Eq.(15), reduction of computational com-
plexity in both RSCC and CSCC is caused by the following
facts:

1. A SB{DCT is calculated instead of a full{band DCT;

2. a smaller{size IDCT is needed instead of the full{
band IDCT;

3. the ln and Abs functions are computed for smaller{
size sequences.
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Figure 3: Running{time comparison

3.1. Approximate Speech Cepstrum

The real cepstrum of a voiced speech segment contains im-
pulses at the multiples of the pitch period, while an un-
voiced speech cepstrum contains no such impulses [5]. Fig.4
shows the RCC and the RSCC for two di�erent speech
segments (voiced and unvoiced) of a signal sampled at 16
kHz. In all cases the speech signal is windowed by a Ham-
ming window of the wanted segment size before applying
the DCT or the SB{DCT. We can conlude from this �gure
that the SB{DCT determines correctly the mode of excita-
tion. The pitch period is seen to be the same for the voiced
segment by applying either RCC or RSCC.
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Figure 4: DCT and SB{DCT Speech Cepstra



3.2. Approximate Echo Detector

A new application of both fast full{band discrete cosine
transform and SB{DCT is given in this subsection. A sim-
ulation test similar to that given by [7] for applying the
complex cepstrum in echo detection is applied here for both
the CCC and CSCC. In this test, a sine wave of fre-
quency f is created with a sampling frequency fs. An echo
is added to the signal with an amplitude A and a position
P seconds after the begining of the signal. Fig.5 shows the
simulated signal for f = 10 Hz and fs = 200 Hz with val-
ues of A = 0:75 and P = 0:2 seconds and also the results
of �nding the CCC and CSCC. The subband complex
cepstrum is shown for the half{band (M = 2) and quarter{
band (M = 4) cases.
Table 2 shows the e�ciency of the SB{DCT cepstra in de-

Method Used Signal to Echo Ratio

Full{Band DCT 40 dB

SB{DCT (m = 1) 26 dB

SB{DCT (m = 2) 20 dB

SB{DCT (m = 3) 16 dB

SB{DCT (m = 4) 14 dB

Table 2: Maximum signal to echo ratio for correct echo
detection

tecting echo signals in terms of the maximum signal to echo
ratio or in other words in terms of the minimum detectable
echo for di�erent numbers of decomposition stage.
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Figure 5: Echo Detection Examples

4. CONCLUSIONS

The subband{DCT method is investigated in this paper.
Both linear distortion and aliasing errors occurring due to
the approximation are analyzed. Aliasing{error coe�cients

are found for any number of decomposition stages. The SB{
DCT is applied in cepstrum analysis and used as a detector
for voiced/unvoiced mode of excitation and as a pitch esti-
mator. No essential di�erence is found between the results
of the SB{DCT cepstrum and the full{band DCT cepstrum.
The approximate SB{DCT complex cepstrum is used for
detecting echo signals. The algorithm shows a high e�-
ciency for a wide range of amplitudes and positions of the
echo.
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