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ABSTRACT

We present a new method for estimation of spec-
trum transition of a nonstationary signals in low
signal-to-noise ratio cases. Instead of basic func-
tions which are employed by the previously pro-
posed time-varying ARmodeling, we introduce the
spectrum transition constraint in the cost function
described by the partial correlation coe�cients so
that the method is applicable to noisy nonstation-
ary signals of which spectrum transition patterns
are complex. By applying this method to the
analysis of vibration signals on the interventric-
ular septum of the heart, noninvasively measured
by the method developed in our laboratory using
ultrasonics, spectrum transition pattern is clearly
obtained during one beat period for a normal in-
dividual and a patient.

1. INTRODUCTION

Much work has been done on the parametric spec-
trum estimation using autoregressive (AR) model.
A strong restriction of these methods lies in the
necessary assumption that the signals may be con-
sidered to be stationary over the observation inter-
val. Time-varying parametric approaches of mod-
eling have been proposed to overcome this limita-
tion and to take the e�ects of nonstationary sig-
nals into account explicitly. To estimate the pa-
rameters using a linear algorithm, the unknown
time-varying parameters are approximated by lin-
early weighted combinations of a small number of
known functions. The choice of the basic functions
is an important part of such modeling process. A
convenient way is to replace the time-varying co-
e�cients with their second-order expansion [1], or
an arbitrary order expansion [2], [3], Legendre [4],
[5], Fourier [6], prolate spheroidal [7], and B-spline
[8] are usually chosen for the basic functions. Since
the number of unknown parameters is large, e�-
cient equivalent representations for the modeling
have been also proposed such as lattice �lters [2],
[7], [9].
However, if the spectrum transition pattern is

complex and/or there are large di�erences in the
transition patterns among the individual nonsta-
tionary signals, it is di�cult to estimate the tran-
sition pattern stably by choosing a set of basic
functions a priori.
We have proposed a method for analyzing the

spectrum transition of the multiframe signals of
the fourth heart sounds detected during the stress
test [10]. In the method, however, the analyzable
signals are limited to multiple short length sig-
nals and the spectrum transition pattern between
these signals are obtained. In this paper, by mod-
ifying the method we propose a new approach of
modeling to estimate the spectrum transition of a
nonstationary signal by using a linear algorithm
without any basic function.
In this paper, moreover, we describe the spec-

trum transition constraint not by the linear pre-
dictive coe�cients of the AR model but by the
partial coe�cients.
In order to noninvasively diagnose the acoustic

characteristics of the heart muscle, it is necessary
to measure the small vibration signals on the heart
wall from the chest surface and analyze the resul-
tant nonstationary signal during one beat period.
For the former problem of the measurement, we

have developed a new method to noninvasively
measure a small vibration signal on the heart wall
using ultrasound [11]. For the latter problem of
the analysis, we apply the developed time-varying
modeling to the nonstationary small vibration sig-
nals on the interventricular septum in order to
diagnose the acoustic characteristics of the heart
muscle. These characteristics and the transition
patterns may be applied to acoustic diagnosis of
heart diseases.

2. PRINCIPLE OF SPECTRUM ESTIMATION
USING PARTIAL COEFFICIENTS

Let us divide an original nonstationary signal
x(n) into succeeding F short signals fxj(n)g; n =
0; 1; :::; N �1; j = 0; 1; :::; F �1, each is called by a
frame, where F is the number of frames. Let us as-
sume that each frame signal xj(n) be an AR signal



of order M , represented by the forward and back-
ward recursions using ith order forward and back-
ward predictive coe�cients fami;jg and fbmi;jg of
jth frame data, where am0;j = 1 and bm;m+1;j = 1.

The forward predictive error x+j (n) is given by

x+m;j(n) =
mX
i=0

ami;j � xj(n� i): (1)

When the predictive order is equal tom, the power
�m;j of the predictive error for the data in the
period [M;N � 1] of jth frame data is given by

�m;j =
N�1X
n=M

jx+m;j(n)j
2

=
mX
i=0

mX
`=0

ami;jam`;jCi`;j; (2)

where Ci`;j =
PN�1

n=M xj(n � i) � xj(n � `) is the
covariance of data xj(n). By minimizing �m;j

with respect to the forward predictive coe�cients
fami;jg, the following normal equation is given by

1

2

@�m;j

@ami;j

= 0 =
mX
`=0

am`;j � Ci`;j (3)

=
N�1X
n=M

x+m;j(n) � xj(n� `): (4)

(` = 1; 2; :::;m)

Let us de�ne the polynomials Am;j(z) =Pm
i=0 ami;j � z

�i, and Bm;j(z) =
Pm+1

i=1 bmi;j � z
�i,

where amm;j = 1 and bm;m+1;j = 1. By letting us
describe the z-transform of xj(n) by Xj(z), and
letting us employ the operator <;> as the inner
product, the normal equation of Eq. (4) is given
by

< Am;j(z)Xj(z); z
�`Xj(z) > = 0; (5)

where ` = 1; 2; :::; m. This relation represents the
orthogonality principle. Moreover, Bm;j(z) must
be orthogonal to the polynomials Bm�1;j(z), � � �,
B0;j(z) with lower order, that is,

< Bm;j(z)Xj(z);Bq;j(z)Xj(z) >

=
m+1X
i=1

m+1X
`=1

bmi;jbq`;jCi`;j = �mqdm;j; (6)

where q = 0; 1; :::; m � 1, �mq is Dirac delta func-
tion, and dm;j is a real positive constant.

Since Am;j(z)Xj(z) and Bm;j(z) Xj(z) must

be orthogonal to the powers z�1Xj(z),. . .,

z�(m�1)Xj(z), Am;j(z) is described by [12]

Am;j(z) = Am�1;j(z) + km;jBm�1;j(z)

= 1 +
mX
i=1

ki;jBi�1;j(z); (7)

where km;j is the partial coe�cient for jth frame
data and is determined from the above orthogonal-
ity principle. Let us de�ne vectors aj, kj, cj, xj , a
M �M upper triangle matrix Bj, a M �M diag-
onal matrix �j , and a M �M covariance matrix
Cj, which is positive de�nite, by

aj = [aM1;j; aM2;j ; � � � ; aMM;j ]
T ;

kj = [kM1;j ; kM2;j ; � � � ; kMM;j]
T ;

cj = [C01;j; C02;j; � � � ; C0M;j ]
T ;

xj = [xj(M); � � � ; xj(N � 1)]T ;

Bj =

2666664
1 b11;j b21;j . . . bM�1;1;j
0 1 b22;j . . . bM�1;2;j

0 0 1
. . .

...
...

. . .
. . .

. . . bM�1;M�2;j
0 . . . . . . 0 1

3777775 ;

�j =

2664
d1j 0 . . . 0
0 d2j . . . 0
... 0

. . .
...

0 . . . 0 dM;j

3775 ;
Cj = [Ci`;j]:

Using these vectors and matrices, Eq. (3), Eq (7),
and Eq. (6) are respectively simpli�ed as

Cj � aj = �cj; (8)

aj = Bj � kj ; (9)

BT
j �Cj �Bj = �j: (10)

Thus, the total power �M;j of Mth-order forward
predictive error in Eq. (2) is given by

�M;j = aTj Cjaj + 2cTj aj + xTj xj

= kTj B
T
j CjBjkj + 2cTj Bjkj + xTj xj

= kTj �jkj + 2(BT
j cj)

Tkj + xTj xj : (11)

3. MINIMUM LIKELIHOOD ESTIMATION OF
SPECTRUM TRANSITION

When each frame data of multi-frame nonstation-
ary signal fxjg is described by an autoregressive
model, the logarithmic likelihood function `, which



shows the probability of fxjg for the unknown par-
tial coe�cients fkjg, is given from Eq. (11) by

` = �
F�1X
j=0

(
kTj �jkj + 2(BT

j cj)
Tkj + xTj xj

jxjj2

+� jkj+1 � kjj
2
o
; (12)

where � is a Lagrange multiplier. The second term
in the right hand side of Eq. (13) shows the con-
straint for the spectrum transition between the
succeeding frames. Let us determine the partial
coe�cients fkjg which maximizes the logarithmic
likelihood function ` as follows: By taking the par-
tial derivative of ` with respect to fkjg and setting
the results to be zero,

�
1

2

@`

@kj
= 0 =

1

jxjj2

�
�jkj +BT

j cj

�
+� (2kj � kj�1 � kj+1) :(13)

By solving the simultaneous equation of (13), the
partial coe�cients fkjg of all frame data are esti-
mated under the constraint for the spectrum tran-
sition between the frame data. Let us denote
(�j=jxj j

2 + 2�I) by a diagonal matrix Dj and let
us de�ne FM�FM matrixG and FM -dimension
vectors g and k as follows:

G =

26666666664

D0 ��I 0 � � � 0 ��I
��I D1 ��I 0 � � � 0

0 ��I D2
. . .

. . .
...

... 0
. . .

. . .
. . . 0

0
...

. . .
. . .

. . . ��I
��I 0 . . . 0 ��I DF�1

37777777775
;

g =

"
(
BT
0 c0

jxjj2
)T ; � � � ; (

BT
F�1cF�1

jxF�1j2
)T
#T

;

k = [kT0 ;k
T
1 ; � � � ;k

T
F�1]

T ;

where ��I in the top right and bottom left of
the matrixG is introduced by assuming the frame
data are same between 0-th frame and F th frame,
that is, x0(n) = xF (n). Substituting these matrix
and vectors for Eq. (13), optimum estimation of
the spectrum transition of a nonstationary signal
under the constraint for the spectrum transition
between frame data is achieved by solving the fol-
lowing linear simultaneous equations:

Gk = �g; (14)

Therefore, the partial coe�cients of the multi-
frame data are estimated bybk = �G�1g; (15)

where G�1 is the inverse matrix of G. Using bk =
[kT0 ;k

T
1 ; � � � ; k

T
F�1]

T , the estimates of the vectors
aj of linear predictive coe�cients in the jth frame
data is obtained bybaj = Bj

bkj: (16)
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Figure 1. (a) an electrocardiogram, (b) heart
sounds, and (c) small vibration signal x(n) with high
frequency components on the interventricular sep-
tum of the heart of a normal subject measured by
the newly developed method in our lab.

4. EXPERIMENTAL RESULTS

We applied this method to the analysis of small
vibration signals x(n), measured in our laboratory
using the noninvasive measurement method [11] on
the interventricular septum in the heart wall of a
normal male subject of 26 years old in Fig. 1(c) for
the noninvasive acoustical diagnosis of myocardial
dysfunction.
One beat signal x(n) in the �rst beat period in

Fig. 1(c) is divided into succeeding 30 short frame
signals x(n; j), each of which has 30 points in
length, by multiplying the Hamming window with
a length of 30 points. That is, each frame signal
is about 150 ms in length since the signal is A/D
converted at a sampling period of 5 ms. Adjacent
short signals overlap each other by their three-
quarter-length. Since each duration time of the
�rst heart sound (I) and the second heart sound
(II) in Fig. 1(b) is about 150 ms in length, let us
assume that each frame signal x(n; j) is stationary
over each frame.
Since the SNR is not so high and the duration

time of each frame signal is very short, there are
large uctuations and many phantom peaks ap-
pear in spectra of Figs. 2(a) and 2(b) estimated by
independently applying the discrete Fourier trans-
form (DFT) and the maximum entropy method
(MEM) to each frame signal (N=30, F=30).
On the other hand, by applying the proposed

method (M = 8) to the same multi-frame sig-
nals, the resultant spectrum transition patterns



are shown in Fig. 3(a) for the same signal as Fig.
2. In these experiments the value of � of Eq. (12)
is 0.2. In the resultant spectra in Fig. 3(a), the
frequency transition from the systole to the dias-
tole is clearly obtained.
For a male young patient with cardiomyopathy,

by applying the proposed method (M = 8) to the
multiframe signals, the resultant spectrum tran-
sition patterns are shown in Fig. 3(b). In these
experiments the value of � is 0.2.
By comparing these results in Figs. 3(a) and

3(b), for the normal subjects there are large
changes in dominant frequency and power of the
vibration from the diastole to the systole, while for
the patient these changes are smaller than those
for the normal. These qualitative phenomena will
be quantitatively con�rmed using many samples
in near future.

5. CONCLUSIONS

We present a new method to estimate spectrum
transition of a nonstationary signal in low SNR
cases using a linear algorithm without any basic
function. By applying the proposed method to
the heart wall vibrations, we found there are clear
spectrum transition patterns.
The electrocardiogram or the heart sounds con-

tain only low frequency components and each
of them does not continue within one beat pe-
riod. However, small vibration signals accurately
measured by our method contain the information
enough to diagnose all four stages in one cardiac
cycle. Thus, a new scienti�c �eld of noninvasive
acoustic diagnosis of the heart dysfunction will be
developed soon by the measurement of the heart
wall vibrations and their analysis as proposed in
this paper.
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Figure 2. For the vibration signal x(t) in Fig. 1(c)
of a normal subject, (a) the spectra of signals x(n; j)
obtained by the DFT with the Hamming window of
30 point in length, (b) the spectrum transition esti-
mated by the maximum entropy method. The even
and odd frames are shown in solid lines and dotted
lines, respectively. Each estimated pole frequency
is indicated by circle.
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Figure 3. The spectrum transition patterns esti-
mated by the proposed method in this paper. (a)
For the vibration signal of a normal subject and (b)
for a patient with cardiomyopathy. Each estimated
pole frequency is indicated by circle.


