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ABSTRACT

Primarily the structured auto-regressive (AR) model

was introduced as a mean to estimate the parameters

of non-stationary signals in additive noise. However, it

is straightforward to use the structured AR model as a

model-based time-frequency distribution (TFD). It is

shown that the structured AR TFD can be interpreted

as a member of Cohen's class with a non-stationary

adaptive kernel. The interpretation of the structured

AR TFD as a member of Cohen's class establishes a

link between TFD:s and signal parameter estimation.

1. INTRODUCTION

Power spectral density estimation (PSDE) of wide-sense

stationary (WSS) signals was traditionally based on

Fourier transforms, until a urry of research activity

the recent decades resulted in a number of alternative,

high resolution, approaches. Fourier-based techniques

using windowed data competed with model-based ap-

proaches. When applicable, model-based approaches

were found to be superior to Fourier-based, especially

in the case of short data records [6].

In recent years, time-frequency spectral density estima-

tion (TFSDE) of non-stationary signals has received a

considerable attention [4, 5]. A large variety of ap-

proaches have been suggested, of which almost all are

non-parametric and many belong to the well-known

Cohen class. Within the Cohen class di�erent TFSDE

are characterized by their kernel which, in analogy to

windows in Fourier based PSDE, are designed to en-

hance useful information in the signal while suppress-

ing artifacts and noise. Traditionally, TFD:s have used

�xed kernels. However, �xed kernels limit the class

of signals for which the TFD performs well. In an

attempt to alleviate this drawback, signal-dependent

kernels have been proposed [3, 7]. The proposed opti-

mization criterions are, however, ad hoc.
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The structured AR approach to signal parameter esti-

mation was introduced in [1] and the statistical prop-

erties for the case of a polynomial phase signal were

investigated in [2]: The estimates are consistent and

close to e�cient. As indicated in [1], the structured AR

�lter can be used as a TFD. Simulations have shown

some encouraging results. However, the properties of

the structured AR approach as a TFD have not been

investigated, and the relationship to other TFD:s has

not been clari�ed.

2. STRUCTURED AR{MODELING

Here the main results of structured AR modeling are

given for easy reference. Details of the derivation can

be found in [2]. Consider a complex-valued determin-

istic signal, say sk(#0), parameterized by #0 and ob-

served in white Gaussian noise with variance �2 at time

instants ftkg
N�1
k=0 ,

y(tk) = sk(#0) + e(tk): (1)

The time dependence of sk(#0) is written as an index

in order to keep the notation short. The signal may

be sampled non-uniformly in time. Let sk(�#) denote a

user-de�ned (scaled) model signal, parameterized by a

model signal parameter vector �#. For numerical rea-

sons the model signal sk(�#) is \scaled" such that one

of the signal components in sk(�#) equals one for k = 0,

and as a consequence dim(�#) = dim(#0) � 2. Let �#0

denote the model signal parameter vector that corre-

sponds to #0. Due to the scaling, sk(�#0) and sk(#0)

di�er by a constant multiplicative (complex) factor, say

b0. For example, if sk(#0) is a sum of two chirps, then

sk(#0) =

2X
l=1

bl expfj(al0 + al1tk + al2t
2
k
)g;

#0 = (a10; a11; a12; a20; a21; a22; b1; b2);

�#0 =
�
a11; a12; (a20 � a10); a21; a22; b2=b1

�
;

b0 = b1 expfja10g;



and sk(#0) = b0sk(�#0).

The time-dependent structured AR �lter parameter vec-

tor of order n that minimizes the analytical prediction

error variance is a function of �#, and can be written as

�k(�#) = �k(�#) s
�

k�1(
�#)sk(�#); (2a)

sk�1(�#)
def

= (sk�1(�#); : : : ; sk�n(�#))
T ; (2b)

�k(�#)
def

= �
1

�20 + sH
k�1(

�#)sk�1(�#)
; (2c)

�20
def

= �
2

b
2

0

; (2d)

where '�' denotes complex conjugate. Note that (bold-

face) sk�1(�#) denotes an (nj1) vector, whereas sk(�#) is

a scalar. Let y
k�1 denote a vector of n measurements,

y
k�1

def

= (y(tk�1); : : : ; y(tk�n))
T : (3)

The structured AR �lter �k(�#) is used to predict y(tk)

from y
k�1, and the prediction is given by

ŷk(�#) = ��T
k
(�#) y

k�1: (4)

Let the prediction error be denoted by �"k(�#). Then

�"k(�#) = y(tk)� ŷk(�#)

= y(tk) + �T
k
(�#) y

k�1: (5)

The signal parameter estimates are found as the min-

imizing argument of the sum of squared prediction er-

rors,

�̂# = argmin
�#

VN (�#); (6)

VN (�#)
def

= 1
N�n

P
N�1

k=n j �"k(�#) j
2: (7)

The notation in (2a) and (7) is not entirely correct

since �k(�#) actually depends on both �# and �20 , c.f.

(2c). However, when implementing the structured AR

algorithm, �20 in (2c) is preferably set to a constant,

since otherwise the search may become ill-conditioned

for high SNR. The performance of the estimator is not

signi�cantly decreased even if �20 is set to value �10dB

from the true value, and the phase parameters are still

consistently estimated. Then, after �# has been esti-

mated, b0 and the noise variance �2 can be estimated

using a straight-forward least squares �t of sk( �̂#) to

y(tk).

Note that the signal parameters can be estimated even

if the data is non-uniformly sampled and that once �#

has been estimated, then �k(�#) is de�ned for all tk, i.e.

�k(�#) can be calculated for any t.

3. TIME-FREQUENCY DISTRIBUTION

When the signal parameters have been estimated, the

instantaneous phase and frequency are given by

arg sk( �̂#) and d

dt
arg sk( �̂#), respectively. The struc-

tured AR �lter contains information on the instanta-

neous spectral density of the signal and can be used

to construct a corresponding TFD. However, note that

once the signal parameters have been estimated, all in-

formation about the signal is contained in the signal

parameter estimates. Any other means to present the

information is redundant and serve merely as a tool

to visualize and interpret the information. In the fol-

lowing, TFD:s based on the structured AR �lter are

introduced and their properties are discussed. Let the

structured AR parameters given by the estimated sig-

nal parameters be denoted by fcl(tk; �̂#)g
n

l=1;

�k( �̂#) =
�
c1(tk; �̂#); : : : ; cn(tk; �̂#)

�
: (8)

A TFD based on the structured AR parameters is achi-

eved as follows:

1. Estimate #0 .

2. Choose a constant \sampling" interval � = tk �

tk�1 and a structured AR length n.

3. Calculate the structured AR parameters from (2a)-

(2c).

4. Substitute �k( �̂#) into a formula relating the AR

parameters to the PSD.

The structured AR approach retains the parameters �̂#

as continuous-time signal parameters, despite the fact

that all calculations are performed using sampled data.

As a consequence the structured AR TFD will generally

be de�ned in 0 < ! � 2� without aliasing e�ects.

A straight-forward choice of formula that relates the

structured AR parameters to PSD is the theoretical

AR PSD [6]:

P̂AR(tk; w; �̂#) =
�̂2

j1 +
P

n

l=1 cl(tk;
�̂#)e�j!lj2

; (9)

where ! denotes the discrete frequency and �̂2 is the

estimated measurement noise variance, c.f. (1).

Another TFD based on the structured AR parame-

ters is achieved by noting that the structured AR pa-

rameters are estimated scaled versions of the instanta-

neous autocorrelation function of y(tk). Let the (time-

varying) covariance function of y(tk) be denoted by

rk(u; v),

rk(u; v)
def

= E[y(tk�u)y
�(tk�v)]

= sk�u(#0)s
�

k�v
(#0)] + �2�u;v: (10)



From (2a){(2d), it holds true that

cl(tk ; �#0) = �k(�#0)s
�

k�l
(�#0)sk(�#0)

=
�k(�#0)

b20
s�
k�l

(#0)sk(#0) = �
�k(�#0)

b20
rk(0; l); (11)

for l > 0. As a candidate for a TFD, consider

�AR(k; !; �̂#)
def

=

nX
l=1

b̂20

�k( �̂#)
cl(tk ; �̂#)e

�j!l: (12)

Using (11) it follows that

�AR(k; !; �̂#) =

nX
l=1

rk(0; l; #̂)e
�j!l (13a)

= sk(#̂)e
�j!k

 
nX
l=1

sk�l(#̂)e
�j!(k�l)

!
�

(13b)

def

= sk(#̂)e
�j!kF�

n�
fsk(#̂)g; (13c)

where F�
n�
fsk(#̂)g denotes the discrete Fourier trans-

form of sk(#̂) windowed by a rectangular window stretch-

ing from k � 1 to k � n. From (13c) it is seen that

�AR(k; !; �̂#) is the complex energy density of a win-

dowed version of sk(#̂) and that it can be interpreted

as a truncated discrete version of the Page distribution

[5]. Since the Page distribution is a member of Cohen's

general class of bilinear transforms, there is reason to

believe that this is the case also for �AR(k; !; �̂#). The

discrete version of Cohen's general class of TFD:s [4]

can be written as

�(k; w)
def

= 2

1X
l=�1

1X
m=�1

G(m� k; l)rm(�l; l)e
�j2!l;

(14)

where G(m� k; l) is an implementation speci�c kernel

that gives di�erent TFD:s their properties. By equat-

ing (13a) to (14), it is seen that the structured AR TFD

(12) can indeed be interpreted as a member of Cohen's

class and that the kernel is

G(m� k; l; #̂) =8><
>:

1
2
j rm(�l; l; #̂) j

�2 �

r�
m
(�l; l; #̂)rk(0; l; #̂)e

j!l�l;m l = 1; : : : ; n;

0 else.

(15)

�AR(k; !; �̂#) is not real-valued and hence an estimate

of the instantaneous spectral density is given by the

magnitude of �AR(k; !; �̂#).

The structured AR TFD:s do not contain any cross-

terms. This property is a consequence of that the kernel

contains �m;l, which implies

�(k; w) = 2

1X
l=�1

~G(l � k; l)rl(�l; l)e
�j2!l (16a)

= 2

1X
l=�1

~G(l � k; l)s(t2l)s
�(t0)e

�j2!l; (16b)

= 2s�(t0)

1X
l=�1

~G(l � k; l)s(t2l)e
�j2!l; (16c)

where ~G(l�k; l) denotes the kernel without �l;m. From

(16c) it is seen that it is s(t2l), i.e. not s(tl)s
�(t�l), that

is transformed into the frequency domain, weighted

with some weight-function ~G(m � k; l). Cross-terms

appear when a product of signals containing multiple

components is transformed, which would have been the

case in the Wigner-Ville transform.

Formulas (9) and (12) implicitly assume that the signal

is an AR process and a moving average (MA) process,

respectively. The match between (9) and (12) and the

\true" time-frequency spectra is limited by the valid-

ity of the model, i.e. how well it describes the signal.

From PSDE of WSS signals it is known that an AR

model describes the signal using signi�cantly less pa-

rameters than when using a corresponding MA model

in the case of poorly damped signals, such as cisoids.

When using structured AR �lters a large number of

model parameters corresponds to a large data window.

However, using a large data window implies a low time

resolution. A good TFD shall provide a high resolution

in both time and frequency. Hence, it is reasonable to

expect that the theoretical AR PSDE approach (9) will

outperform the (MA) approach (12), especially in the

case of complex valued signals with non-linear phases.

Note that (12) is an estimate of the TFSD of sk(#0).

An estimate of the TFSD of y(tk) is provided by (9).

It is possible to construct other structured AR �lters

and loss-functions that correspond to well known

TFD:s other than the Page distribution. For exam-

ple, consider a \backward" structured AR implemen-

tation, i.e. sk(#0) is estimated from fy(tk+l)g
n

l=1 and

where the signal parameters are found by minimizing

the sample variance of the backward prediction errors.

The corresponding backward structured AR TFD can

be interpreted as the future running transform, c.f. [5].

If the signal parameters are de�ned as the minimizing

arguments of

V fb

N
(�#) = 1

N�n

P
N�n

k=n

�
j �"f

k
(�#) j2 + j �"b

k
(�#) j2

�
; (17)

where �"
f

k
(�#) and �"b

k
(�#) denote the forward and back-

ward prediction errors, respectively, then the corre-



sponding TFD de�ned as

�
fb

AR
(k; !; �̂#)

def

=

nX
l=1

 
b̂20

�
f

k
( �̂#)

c
f

l
(tk; �̂#)e

�j!l +
b̂20

�b
k
( �̂#)

cb
l
(tk; �̂#)e

j!l

!

(18)

can be interpreted as a truncated discrete version of the

Rihaczek distribution. Hence, di�erent structured AR

�lters and loss-functions correspond to di�erent TFD:s.

4. NUMERICAL STUDY

Figure 1 shows a comparison of the structured AR

TFD:s given in (9) and (12), the Wigner-Ville trans-

form and the short time Fourier transform (STFT).

The signal is the sum of a cisoid and linear FM which

is observed in noise.

Figure 1 veri�es that the structured AR TFD:s do not

contain any cross-terms. The structured theoretical

AR TFD (9) has a high resolution in both time and fre-

quency, as expected. The \rugged" appearance of the

theoretical AR TFSDE is explained by the fact that

when signal cancellation occurs (i.e. zero crossings of

the envelope), then the energy of the signal is zero.

Structured AR TFD:s are only indirectly inuenced by

the noise, through the signal parameter estimates �̂# .

Hence, they are robust against noise.
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Figure 1: Structured AR TFSDE of a cisoid and linear

FM of equal power in noise; SNR=3dB, N=200: (a)

Structured theoretical AR, Eq (9), (b) Structured AR,

Eq (12), (c) Wigner-Ville and (d) STFT.

5. CONCLUDING REMARKS

It has been shown how the structured AR �lter coef-

�cients can be used to construct TFD:s. The struc-

tured AR TFD:s are model based and, to the best of

the authors knowledge, they are the �rst completely

model-based TFD:s to be reported.

It was shown that �AR(k; !; �̂#), de�ned in (12), can be

interpreted as a member of Cohen's class. Hereby a

link between TFD:s of Cohen's class and signal param-

eter estimation has been established. Hence, through

Parseval's relation, it can be conjectured that struc-

tured AR signal parameter estimation is equivalent to

a �t of the corresponding (model-based) structured AR

TFD to the time-frequency content of the measure-

ments. Moreover, in applications l and m in Cohen's

class of TFD:s (14) is limited such that jlj < L and

jmj < M . Then the kernel can be viewed as a complex

valued matrix of dimension (2L+1j2M+1), [4]. Using

Parseval's relation, and the fact that E[�"2
k
(�#)] is min-

imal by construction, it can also be conjectured that

the structured AR TFD kernel is optimal, in the sense

that no other kernel of the same dimension can produce

a TFD that is closer to the true time-frequency spec-

tral density of the measurements. The latter conjecture

holds, of course, only if the model is known.
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