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ABSTRACT

This work extends Papoulis' General Sampling Expansion

to the vector case where N band limited signals are passed

through a multi-input multi-output (MIMO) LTI system

that generates M (M � N) output signals. We �nd nec-

essary and su�cient conditions for reconstructing the N

input signals from the samples of the M output signals, all

sampled at N=M the Nyquist rate. A surprising necessary

condition is that M=N must be an integer. This condition

is no longer necessary when each of the output signals can

be sampled at a di�erent rate.

1. INTRODUCTION

In his famous General Sampling Expansion (GSE) [1],[2]

Papoulis has shown that a band limited signal f(t) of �nite

energy, passing through M LTI systems and generates re-

sponses gk(t); k = 1; : : : ;M , can be uniquely reconstructed,

under some conditions on the M �lters, from the samples

of the output signals gk(nT ), sampled at 1=M the Nyquist

rate. More recently [3],[4] the GSE has been extended to

multidimensional signals in which the signal f depends on

several variables, i.e., f(x) = f(x1; : : : ; xK).

In this work we provide a vector extension of the GSE.

We consider N band limited signals (or a signal vector)

f(t)T = [f1(t); : : : ; fN (t)], all having the same bandwidthB,

that pass through a multi-input multi-output (MIMO) LTI

system, as in Figure 1, to yield M output signals g(t)T =

[g1(t); : : : ; gM(t)] where M � N . The transfer function of

the MIMO system is denoted H(!), where H is an M �N

matrix, and so we have

G(!) = H(!)F(!) (1)

where F(!)T = [F1(!); : : : ; FN (!)] ;G(!)T =

[G1(!); : : : ; GM(!)] and Fi(!);Gj(!) are the Fourier trans-

forms of fi(t); gj(t) respectively.

The necessary conditions for reconstruction we provide

are for signals with no known deterministic functional rela-

tionship between them, since dependency between the sig-

nals, if known, can be utilized to further reduce the required

sampling rate.

We examine whether the N input signals can be recon-

structed from samples of theM output signals, at rates that

preserves the total rate to be N times the Nyquist rate (the

rate obtained by sampling each of the input signals at the

Nyquist rate). It turns out, somewhat surprisingly, that
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Figure 1. A MIMO LTI system.

there is a distinction between expansion by an integer fac-

tor (i.e. M=N is an integer) and expansion by a non-integer

factor. When all the output signals are sampled at the same

rate (which is N=M times the Nyquist rate) we show that

reconstruction of f(t) is possible, with some conditions on

the MIMO system, if and only if M=N is an integer. Re-

construction is also possible when M=N is not an integer,

but in this case the sampling rate cannot be equal for all

the output signals.

2. EXPANSION BY AN INTEGER FACTOR

In this section we consider the case where M=N = m is an

integer. We �rst prove that in this case, under some condi-

tions on the MIMO system, it is possible to reconstruct the

inputs from sampling the output at N=M the Nyquist rate.

When sampling at N=M the Nyquist rate, i.e., at a sam-

pling period T = M�=NB, we get aliased versions of the

output signals, which, at the frequency domain, are peri-



odic with a period c = 2B=m. We denote by Ga
k(!) the

Fourier transform of the sampled k-th output signal, and

observe that since it is periodic with a period c it is su�-

cient to consider only one period, say ! 2 [�B;�B + c].

At this region, Ga
k(!) is composed of m replicas of Gk(!),

the Fourier transform of the k-th output signal, shifted in

frequency by multiples of c, i.e.,

G
a
k(!) =

c

2�

m�1X
i=0

Gk(! + ic); ! 2 [�B;�B + c] (2)

Since Gk(!) =
PN

l=1
Hkl(!)Fl(!) where Hkl(!) is the k; l

component of the MIMO system transfer matrix H(!), we

have

G
a
k(!) =

c

2�

m�1X
i=0

NX
l=1

Hkl(!+ic)Fl(!+ic); ! 2 [�B;�B+c]

(3)

This is true for k = 1; 2; : : : ;M , and so we may write, in a

matrix form:

G
a
(!) =

c

2�
T(!)F

a
(!) ! 2 [�B;�B + c] (4)

where Ga(!)T = [Ga
1(!); G

a
2(!); : : : ; G

a
M(!)], Fa(!) is the

M -dimensional vector

F
a
(!)

T
= [F1(!); F1(! + c); : : : ; F1(! + (m� 1)c);

: : : ; FN(!); : : : ; FN (! + (m� 1)c)] (5)

i.e., its l-th component F a
l (!) = Fl1(! + (l2 � 1)c) where

l1 = dl=me and

l2 =

�
(l modm) m does not divide l

m m divides l

Finally, T(!) is an M �M matrix whose k; l component is

given by

Tkl(!) = Hk;l1(! + (l2 � 1) � c) (6)

We observe that (4) is a set ofM equations for themN =

M unknowns Fl(! + (i � 1)c), where l = 1; : : : ; N and i =

1; : : : ;m. By solving this system of equations we get the

Fourier transform of the input signals at all frequencies ! 2
[�B;B], i.e., we can reconstruct the input signals. Note

that this system of equations will have a single solution if

the determinant of the matrix T(!), which depends solely

on the MIMO system, is not zero for every ! 2 [�B;�B+c].
Many MIMO systems satisfy this condition, but it should

be checked to determine if reconstruction is possible.

One simple example that enables reconstruction is as fol-

lows. Let H1 be an M �N constant matrix of rank N . If

this constant matrix is the MIMO transfer function, recon-

struction is impossible, since at any sampling time point

we get linear dependent samples. Suppose, however, that

we stagger the signals, i.e., shift the k-th output signal by

(k � 1)T=M = (k � 1)�=NB, and then sample each out-

put signal at sampling period T . This is equivalent to

sample at N times the Nyquist rate, while multiplexing

between the M output signals. The transfer function of

the MIMO system in this case is H(!) = D(!)H1, where

D(!) = diag[1; ej!T=M ; : : : ; ej!(M�1)T=M ]. It is easy to see

that in this case the resulting T(!) has a full rank for all !

and so reconstruction is possible.

We next show that we can get such a solvable set of equa-

tions for all the frequency content of the input signals only

when M=N is an integer, implying that this is a necessary

condition for reconstruction.

Suppose M=N is not an integer but then m < M=N <

m+1 where m is an integer. As we sample, say, the output

signal gk(t) every T = M�=NB we get an aliased (sam-

pled) signal whose period in the frequency domain is still

2BN=M . Again, we choose as the basic period the interval

[�B;�B + 2BN=M ]. This interval can be further divided

to N intervals of size 2B=M each. We see that in the �rst

(M mod N) of these N intervals the Fourier transform of

the sampled signals, Ga
k(!), is composed of m+1 replicas of

Gk(!) while in the rest N � (M mod N) intervals there are

only m replicas. This situation is illustrated in Figure 2 for

the case N = 2;M = 3. For the frequencies where there are
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Figure 2. The components of the i-th output chan-

nel in the frequency domain when N=2, M=3.

only m replicas we have M equations (an equation for each

output signal) for mN unknowns (the unknowns are the m

replicas of each of the N input signals). Because mN < M

there are more equations than needed for a solution in this

interval. This means that we somehow "wasted" samples

in this frequency interval, which will cause a "shortage" of

samples for the other frequency intervals (because the total

sampling rate is exactly N times the Nyquist rate). Indeed,

in the frequency intervals where there are m + 1 replicas,

we have (m + 1)N unknowns, but only M equations, and

since M < (m+ 1)N , the set of (m+ 1)N equations does

not have a single solution, but there is a space of many

possible solutions. Since it is assumed that no known func-

tional dependency between the N input signals exists, there

are no additional conditions to determine a unique recon-

struction of the input signals. Thus, having many possible

solutions that are consistent with the measurements implies

that we do not have enough information to reconstruct the

input signals in this case where M=N is not integer and all

outputs are sampled at the same rate.



3. THE INTERPOLATION FORMULA

In this section we provide the explicit formula (the in-

terpolation formula) for reconstruction in the case where

M=N = m is an integer and reconstruction is possible. This

derivation follows the technique used in [1],[2] and [5].

Let us de�ne Ei(t)
T to be the M dimensional

vector whose k-th component is non-zero and equals

ej(k�1�m(i�1))ct only in the region (i�1)m < k � im (i.e. at

this region it takes the values 1; ejct; : : : ; ej(m�1)ct), and it is

zero elsewhere. Note that since cT = 2�, Ei(t) = Ei(t�nT )
for any integer n, i.e., it is periodic with period T .

We now de�ne a set of M -dimensional vectors

Yi(!; t)
T = [Yi;1(!; t); : : : ; Yi;M (!; t)] as the solution of

T(!)
T
Yi(!; t) = Ei(t) ! 2 [�B;�B + c] (7)

where T(!), de�ned in (6), is assumed to be invertible at

each ! 2 [�B;�B + c] to assure reconstruction. Note that

since Ei(t) is periodic, Yi(!; t) is also periodic in t with

period T .

We also de�ne the signals

yi;k(t) =
1

c

Z
�B+c

�B

Yi;k(!; t)e
j!t

d!: (8)

Note that yi;k(t) is not periodic in t despite the fact that

Yi;k(!; t) is periodic in t.

We shall prove below that the interpolation formula is

given by:

fi(t) =

MX
k=1

"
1X

n=�1

gk(nT )yi;k(t� nT )

#
(9)

This equation describes a sum of M convolutions of the M

sampled sequences with the signals yi;k(t), which are calcu-

lated by (8) from the vectors Yi(!; t) that depend solely on

the MIMO system via the relation (7). We can write this

result in a matrix form

f(t) = y(t) � ga(t) (10)

where ga(t)T = [ga1 (t); : : : ; g
a
M(t)],

gak(t) =
P
1

n=�1
gk(nT )�(t � nT ), y(t) is the matrix of

signals whose i; k component is yi;k(t), and � here means

that convolutions are performed instead of multiplications

in the matrix-vector multiplication.

We begin the proof of the interpolation formula by look-

ing at equation (7). This matrix equation can be written

as N groups of m equations:

MX
k=1

Hkq(! + uc)Yi;k(!; t) = �(i� q)e
juct

(11)

where q = 1; : : : ; N and u = 0; : : : ; (m�1). We �rst discuss

the case where q = i. Let us expand Yi;k(!; �)e
j!� , consid-

ered periodic with period c, in the interval [�B;�B+c] into

Fourier series. Using (8) and the periodicity of Yi;k(!; �) in

� , we see that the coe�cients of the expansion are given by

the yi;k(� � nT )'s. We can therefore write

Yi;k(!; �)e
j!�

=

1X
n=�1

yi;k(� � nT )e
j!nT

(12)

Multiplying the m equations generated from (11) choosing

q = i by ej!t and using (12) we have new m equations

MX
k=1

Hki(!+ uc)

1X
n=�1

yi;k(� � nT )e
j!nT

= e
j(!+uc)�

(13)

This is true for u = 0; : : : ; (m�1) for every ! 2 [�B;�B+

c]. Using the identity ej!nT = ej(!+uc)nT and substituting

(!+uc) for !, for every u, we conclude that these m equa-

tions may be represented by a single equation which is true

in the entire interval [�B;B]. Thus we now have

MX
k=1

Hki(!)

1X
n=�1

yi;k(� � nT )e
j!nT

= e
j!�

(14)

for every ! 2 [�B;B]. The right side of this equation is

the frequency response of an LTI system corresponding to

a time shift � . The left side of the equation describes the

sum of manyHki(!)yi;k(��nT )e
j!nT systems. The output

of each of the systems on the left side with input fi(t) is

gki(t+ nT )yi;k(� � nT ), where

gki(t) = hki(t) � fi(t) (15)

In the time domain we get

fi(t+ � ) =

MX
k=1

"
1X

n=�1

gki(t+ nT )yi;k(� � nT )

#
(16)

For the cases where q 6= i we �nd in a similar way that

0 =

MX
k=1

"
1X

n=�1

gkq(t+ nT )yi;k(� � nT )

#
; q 6= i (17)

From the de�nition of the MIMO system (1) we recall that

gk(t) =

NX
q=1

hkq(t) � fq(t) =

NX
q=1

gkq(t) (18)

We now sum equation (16) with the N�1 equations of (17)

and eventually get

fi(t+ � ) =

MX
k=1

"
1X

n=�1

gk(t+ nT )yi;k(� � nT )

#
(19)

Choosing t to be zero and exchanging � and t leads to the

interpolation formula (9).



4. THE STOCHASTIC SIGNAL CASE

We now discuss the interpolation formula for the case where

the inputs are N band limited wide-sense stationary (WSS)

processes xi(t); i = 1; : : : ; N . We can reconstruct the input

process xi(t) by using the same interpolation equation (9).

The reconstructed input xri (t) will be equal in mean square

sense to xi(t), i.e., Ekxi(t)� xri (t)k
2 = 0. A similar tech-

nique to the one used in [5] will be used here. We will fol-

low exactly the steps of the previous section. Equation(14)

still describes two LTI systems. Knowing that if two lin-

ear systems that have the same frequency response are fed

by the same bandlimited WSS input, then the two outputs

are equal in the mean square sense ([5] eq.(11-126) ), we

conclude that if we input a WSS processes xi(t) instead of

the deterministic fi(t) into the two systems described by

equation(14), the two outputs will be equal in the mean

sense. Therefore

xi(t+ �)
ms
=

MX
k=1

"
1X

n=�1

gki(t+ nT )yi;k(� � nT )

#
(20)

where gki(t) ,(which is now a WSS stochastic process), is the

output of the hki(t) LTI �lter fed by xi(t) and the equality

is in the mean square sense. Similarly, we can easily reach

xi(t+ �)
ms
=

MX
k=1

"
1X

n=�1

gk(t+ nT )yi;k(� � nT )

#
(21)

where the right side equals xri (t + �). This concludes the

proof for the stochastic signal case.

5. NON-INTEGER EXPANSION FACTOR

For the case where M=N is not an integer, but L < M=N <

L+1 and L is an integer, we can show that when we sample

the i-th output of the MIMO system every Ti = miT , where

mi is an integer and where T = �=B, then reconstruction

is possible under the condition

N =

MX
i=1

1

mi

mi integers: (22)

The proof of this claim, similarly to section 2, is by show-

ing that a set of solvable equations can be generated for the

unknown folded spectra of the input signals. The interpo-

lation formula for this case has also been derived and will

appear in [6]. Therefore, for every M and N (M � N),

reconstruction is possible if we sample N � 1 outputs ev-

ery T = �=B, i.e., at Nyquist rate, and sample the rest

M � N + 1 outputs with a time period of (M � N + 1)T ,

i.e., at 1=(M �N + 1) of the Nyquist rate.

In addition, we can �nd non-LTI MIMO system that ex-

pand the number of signal by non-integer factor, and allow

reconstruction from the samples of the output signals, all

sampled at N=M times the Nyquist rate. One such example

is to �rst modulate the N input signals to non-overlapping

frequency bands, and generate one signal whose bandwidth

is NB. This signal can then pass through M LTI �lters,

and by Papoulis' GSE can be reconstructed from samples

at 1=M its Nyquist rate, which is N=M times the Nyquist

rate of the original signals. Other examples of periodically

time-varying, linear MIMO system can also be suggested

[7].

6. CONCLUSION

Under certain conditions on the sampling rates, it is pos-

sible to reconstruct N band limited signals, which are the

inputs to of a MIMO LTI system, from periodic samples

of the M outputs of the system (M � N), with the to-

tal average rate of N times the Nyquist rate. Interestingly,

not every combination allows reconstruction. Still, at least

one allowed sampling combination, in which the sampling

periods are multiples of the Nyquist period, always exists.
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