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ABSTRACT

The matching pursuit algorithm derives an expansion of
a signal in terms of the elements of a large dictionary of
time-frequency atoms. This paper considers the use of
matching pursuit for computing signal expansions in terms
of damped sinusoids. First, expansion based on complex
damped sinusoids is explored; it is shown that the expan-
sion can be e�ciently derived using the FFT and simple
recursive �lterbanks. Then, the approach is extended to
provide decompositions in terms of real damped sinusoids.
This extension relies on generalizing the matching pursuit
algorithm to derive expansions with respect to dictionary
subspaces; of speci�c interest is the subspace spanned by
a complex atom and its conjugate. Developing this par-
ticular case leads to a framework for deriving real-valued
expansions of real signals using complex atoms. Applica-
tions of the damped sinusoidal decomposition include sys-
tem identi�cation, spectral estimation, and signal modeling
for coding and analysis{modi�cation{synthesis.

1. SIGNAL DECOMPOSITIONS

In signal processing applications it is often useful to decom-
pose a signal into elementary building blocks. In such a
decomposition, a signal x[n] is represented as a linear com-
bination of expansion functions gm[n]; in matrix notation,

x = D � ; D = [g1 g2 � � � gm � � � gM ] (1)

where the signal x is a column vector (N � 1), � is a col-
umn vector of weights (M � 1), and D is an N �M matrix
whose columns are the expansion functions gm[n] as indi-
cated. The subscript m denotes an index set that describes
the features of the building block gm[n], for instance time
location, modulation, and scale. A wide variety of such
decompositions, ranging from Fourier and sinusoidal mod-
els to wavelet and frame expansions, have been explored in
the literature. These approaches �nd use in coding appli-
cations, where compression is often achieved by discarding
components with low-valued expansion coe�cients; in such
cases the expansion is intended to provide an accurate but
not necessarily perfect reconstruction of the signal.
For Fourier transforms, wavelets, and other expansions

where the functions gm[n] constitute a basis (N = M),
the matrix D is invertible and the expansion coe�cients �
for a given signal are unique. These basis expansions ex-
hibit a certain rigidity, however, in that a given basis is
not well-suited for a wide variety of signals. Consider the
Fourier case: for a time-localized signal, the frequency do-
main representation does not readily indicate the time local-
ization; the Fourier analysis does not provide information
about the relevant signal features. This shortcoming results
from attempting to represent arbitrary signals in terms of
a very limited set of functions. Better representations can
be achieved by using a larger number of expansion func-

tions, i.e. by choosing the gm[n] from a highly redundant
dictionary that not only spans the signal space but also in-
cludes a wide range of functions beyond the spanning set;
this enables appropriate representation of a wide range of
time-frequency behaviors.
When the functions gm[n] constitute a redundant set

(M > N), the linear system in equation 1 is underdeter-
mined. One solution is provided by the pseudo-inverse of D,
which can be derived using the singular value decomposition
(SVD); the weight vector ~� = D+x has the minimum two-
norm of all solutions. This minimization of the two-norm
in the SVD solution is inappropriate for compression, how-
ever, in that it tends to spread energy throughout all of the
elements of ~�; compression is only achievable by discarding
elements below some threshold. In comparison to this SVD
approach of computing a non-sparse solution and thresh-
olding it, the goal of compression is better served by simply
searching for a sparse approximate solution to the under-
determined inverse problem. One algorithm for computing
such sparse approximate solutions is known as matching
pursuit [1]. Investigation of matching pursuit and similar
methods is readily motivated by the compaction improve-
ment that can be achieved with respect to traditional linear
methods such as the SVD. An example of this is given in �g-
ure 1, which shows a plot of the thresholded SVD expansion
coe�cients (solid) and a sparse matching pursuit solution
(circles) for the same reconstruction error. To achieve the
same error as the sparse representation, which has 16 non-
zero elements, the SVD approach must use a very small
threshold, which leads to poor compaction; the SVD solu-
tion retains 330 non-zero elements. In this simulation, the
original signal is the sum of �ve dictionary elements, which
means there is an exact solution with only �ve non-zero
values. For reasons to be discussed, the matching pursuit
does not �nd this optimal sparse solution; however, it does
reliably identify the fundamental signal structure.

2. MATCHING PURSUIT

Matching pursuit is an iterative algorithm for deriving sig-
nal decompositions in terms of expansion functions chosen
from a highly redundant dictionary [1]. Equivalently, it is
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Figure 1. A thresholded SVD solution (solid) and a sparse
matching pursuit approximation (circles) to an underdeter-
mined inverse problem; the representations have the same
reconstruction error.



an approach for computing sparse approximate solutions to
underdetermined inverse problems; the dictionary elements,
or atoms, correspond to the columns of D in the linear sys-
tem. In [1], the dictionary consists of Gabor atoms, which
are scaled, modulated, and translated versions of a single
window function. This set of functions, which notably in-
cludes both Fourier and wavelet-like bases, is highly redun-
dant when the scale, modulation, and translation parame-
ters are not tightly restricted. This redundancy implies that
the atoms exhibit a wide range of time-frequency behavior,
and can thus provide better decompositions of a wide range
of signals than a basis expansion.
Matching pursuit refers speci�cally to a greedy iterative

algorithm for determining an expansion given a signal and a
dictionary of atoms. At each stage of the iteration, the atom
that best approximates a portion of the signal is chosen;
then the weighted contribution of this atom to the signal
is subtracted and the iteration proceeds on the residual.
Mathematically, the task at the i-th stage is to �nd the
atom gm(i)[n] that minimizes the two-norm of the residual
signal

ri+1[n] = ri[n]� �igm(i)[n] (2)

where �i is a weight that describes the contribution of the
atom to the signal, i.e. the expansion coe�cient, andm(i) is
the dictionary index of the atom; the iteration begins with
r1[n] = x[n]. The solution for �i and gm(i)[n] follows from
the orthogonality principle; treating the signals as column
vectors, the energy or two-norm of the residual ri+1 is a
minimum if it is orthogonal to the atom:

hri � �igm(i); gm(i)i = (ri � �igm(i))
H
gm(i) = 0 (3)

=) �i =
hgm(i); rii

hgm(i); gm(i)i
= hgm(i); rii

where the last step follows from restricting the atoms to be
unit-norm. Then, the energy hri+1; ri+1i of the error is

hri; rii �
jhgm(i); riij

2

hgm(i); gm(i)i
= hri; rii � j�ij

2
: (4)

This energy is minimized by choosing the atom gm(i) that
has the largest magnitude correlation with the signal ri,
and the expansion coe�cient for that atom is hgm(i); rii.
In deriving a signal decomposition, the matching pursuit

iteration is continued until the residual energy is below some
threshold, or until some other halting criterion is met. Af-
ter I iterations, the decomposition (or sparse approximate
solution) corresponds to the estimate

x[n] �

IX
i=1

�igm(i)[n]: (5)

The mean-squared error of this approximation, namely the
energy of the residual, converges to zero as the number of it-
erations approaches in�nity [1]. This convergence property
implies that I iterations will provide a reasonable I-term
estimate; this I-term approximate solution, however, is in
general not optimal in the mean-squared sense. Since the
dictionary is not orthogonal, the term-by-term matching
pursuit approach does not �nd the optimal I-term expan-
sion; determining the optimal I-term expansion based on
a non-orthogonal dictionary requires �nding the minimum
projection error over all I-dimensional dictionary subspaces,
which is not computationally feasible for large I [2].
Though searching for the optimal high-dimension sub-

space is not reasonable, it is reasonable to consider the re-
lated problem of �nding an optimal low-dimension subspace
at each iteration of the matching pursuit algorithm. In
this variation of the algorithm, the i-th iteration consists of

searching for an N �J matrix G, whose J columns are dic-
tionary atoms, that minimizes the two-norm of the residual
ri+1 = ri �G�, where � is a J � 1 vector of weights. This
J -dimensional formulation is similar to the one-dimensional
case; the orthogonality constraint hri �G�;Gi = 0 leads
to a solution for the weights:

� =
�
G
H
G
�
�1

G
H
ri (6)

The energy of the residual is then given by

hri; rii � r
H
i G

�
G
H
G
�
�1

G
H
ri (7)

which is minimized by choosing G so as to maximize the
second term. Clearly, this approach is computationally ex-
pensive unless G consists of orthogonal vectors or possesses
some other special structure.
One such structured case, which will prove useful in sec-

tion 4, is the two-dimensional case where the two columns
of G are an atom g and its complex conjugate; the general
results can be signi�cantly simpli�ed for this case. Assume
that the original signal is real and that g has non-zero real
and imaginary parts so that G has full column rank and
GHG is invertible. Then, letting � = hg; g�i and � = hg; rii,
the metric to maximize through the choice of g is

1

1� j�j2

�
2j�j2 � �(��)2 � ���2

�
(8)

and the optimal weights are

� =
h
�(1)
�(2)

i
=

1

1� j�j2

h
� � ���

�� � ���

i
: (9)

Note that the above metric can also be written as

�
�

�(1) + ��(1)� (10)

and that �(1) = �(2)�. The new residual is then

ri+1 = ri � 2<f�(1)gg: (11)

Note that the orthogonal projection of a real signal onto
the subspace spanned by a conjugate pair is again real.

3. DAMPED SINUSOIDAL ATOMS

In many applications of Gabor functions, the function set
is derived from an even-symmetric window, resulting in a
dictionary of atoms that exhibit symmetric time-domain be-
havior. This underlying symmetry is problematic for repre-
senting asymmetric signal features such as transients, which
occur frequently in natural signals such as music. Consider
a typical transient, the damped sinusoid. Figure 2(a) shows
a damped sinusoidal signal; the �rst stage of a matching
pursuit based on symmetric Gabor functions chooses the
atom shown in �gure 2(b). This atom matches the fre-
quency behavior of the signal, but its time-domain symme-
try results in a pre-echo artifact in the residual as shown in
�gure 2(c). The residual has energy before the onset of the
original signal, which the matching pursuit algorithm then
attempts to remove at subsequent stages. One approach
to this problem is the high-resolution matching pursuit al-
gorithm suggested in [3], where symmetric atoms are still
used in the pursuit, but the correlation metric is modi�ed
so that atoms that introduce such artifacts are not chosen
for the signal decomposition. Another approach is to use
asymmetric atoms such as damped sinusoids.
Damped oscillations occur commonly in natural signals

and, by no coincidence, damped sinusoids are a fundamental
part of linear system theory. In this light, damped sinusoids
are a sensible candidate for use as building blocks in signal
decompositions; it is physically reasonable to model a signal
as a sum of damped sinusoids. Estimation of the parame-
ters for such models has been explored in the literature in
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Figure 2. (a) a damped sinusoidal signal, (b) the optimal
�rst atom chosen from a symmetric Gabor dictionary, and
(c) the residual; note the artifact near the onset time.

the framework of system identi�cation, spectral estimation,
and signal modeling [4, 5, 6, 7]; these techniques, however,
have di�culties when the time origin of the sinusoids is
unknown. In [8], complex damped sinusoids are used to
provide a time-frequency representation in which transients
are identi�able; this method however assumes prior knowl-
edge of the damping factor, which is inappropriate for the
application of deriving decompositions of arbitrary signals.
Matching pursuit using a dictionary of damped sinusoids
overcomes the drawbacks of these various approaches.
Like the atoms in a Gabor dictionary { which are indexed

by scale, modulation, and translation parameters { complex
damped sinusoids can be indexed by characteristic parame-
ters. The damping factor a0, modulation frequency !0, and
start time n0 uniquely specify these atoms:

g[a0; !0; n0] = S0 a
(n�n0)

0 e
j!0(n�n0)u[n� n0] (12)

where S0 is a scaling factor needed to satisfy the unit-norm
requirement. For the sake of realizability, an atom is trun-
cated when its amplitude falls below a threshold T ; the
corresponding length is L = dlog T= log a0e, and the appro-

priate scaling factor is S0 =
p
(1� a20)=(1� a2L0 ). Note

that this truncation results in sensible localization prop-
erties; heavily damped atoms are short-lived, and lightly
damped atoms persist in time. Also note that the atoms
are one-sided; an atom thus resembles the impulse response
of a �lter with a single complex pole; this is a suitable prop-
erty given the intent of representing transient signals.
For the dictionary of complex atoms speci�ed by equation

12, the correlations and hence the expansion coe�cients for
signal decompositions will generally be complex; the coe�-
cient provides both a magnitude and a phase for the atom
in the expansion. For real signals, decomposition in terms
of such complex atoms can be misleading; for a signal that
consists of one real damped sinusoid, the matching pursuit
does not simply �nd the appropriate conjugate pair of atoms
as might be expected. This occurs because an atom and its
conjugate are not orthogonal. For real signals, then, it is
preferable to consider expansions in terms of real atoms:

ĝ[a0; !0; n0; �0] = Ŝ0a
(n�n0)

0 cos [!0(n� n0) + �0] (13)

In the complex case, the matching pursuit dictionary is in-
dexed by the three parameters fa0; !0; n0g, and the phase
of an atom in the expansion is given precisely by its corre-
lation. In contrast, the real dictionary requires the phase
parameter as an additional index. The phase is not sup-
plied by the correlation computation; like the other param-
eters, it is estimated from a discretized set by the matching
pursuit. This explicit appearance of the phase results in
both a larger dictionary and a more complicated correla-
tion computation. This problem can be circumvented by

using the complex dictionary and considering expansions
onto the subspace spanned by an atom and its conjugate as
formulated in section 2. This framework provides a method
for deriving real-valued expansions in terms of real damped
sinusoids where the phase is provided by the correlation
computation and an explicit search over a phase index is
not required.

4. THE ALGORITHM

To enable representation of a wide range of signal features,
a large dictionary of time-frequency atoms is used in the
matching pursuit algorithm. The computation of the cor-
relations hg; rii is thus intensive. As noted in [1], this com-
putation can be reduced using an update formula derived
from equation 2; the correlations at stage i+1 are given by

hg; ri+1i = hg; rii � �ihg; gm(i)i (14)

where the only new computation required for the correlation
update is the dictionary cross-correlation term hg; gm(i)i,
which can be precomputed and stored if enough memory is
available. For some dictionaries, the atomic structure can
be exploited to simplify the correlation computation irre-
spective of this update formula. Such an approach is readily
applicable to dictionaries of complex damped sinusoids.

4.1. Complex Damped Sinusoids

For the dictionary of complex damped sinusoids, correla-
tions must be computed for every combination of damping
factor, modulation frequency, and time shift. The corre-
lation hg; xi of a signal x[n] with an atom g[a0; !0; n0] is

�(a0; !0; n0) = S0

n0+L�1X
n=n0

x[n] a
(n�n0)

0 e
�j!0(n�n0) (15)

where the atoms are truncated to a length L that is a func-
tion of the damping factor a0. The structure of this corre-
lation allows for substantial reductions in the computation
requirements with respect to the time shift and modulation
parameters. These are examined in turn.
A simpli�cation of the correlation computation over the

time index is provided by the exponential structure of the
atoms, which results in a recursion relationship between
correlations at neighboring times:

�(a0; !0; n0 � 1) = a0e
�j!0�(a0; !0; n0) (16)

+ S0
�
x[n0 � 1] � a

L
0 e

�j!0Lx[n0 + L� 1]
�
:

This is simply a one-pole �lter with a correction to account
for the atom truncation. It is operated in reversed time to
make the recursion stable for damped sinusoids; the similar
forward recursion is unstable for a0 < 1. This �lter struc-
ture suggests interpreting the correlation computation over
all possible indices fai; !i; nig as an application of the sig-
nal to a dense grid of one-pole �lters in the z-plane, which
are the matched �lters for the dictionary atoms. The �lter
outputs are the correlations needed for the matching pur-
suit; the maximally correlated atom is directly indicated by
the maximum magnitude output of the �lter bank.
A further simpli�cation can be achieved if the z-plane �l-

terbank, i.e. the matching pursuit dictionary, is structured
such that the modulation frequencies are equispaced for
each damping factor. If the �lters (atoms) are equispaced
angularly on circles in the z-plane, the discrete Fourier
transform can be used for the computation over !0. Specif-
ically, for !0 = 2�k0=K, the correlation is given by

�(a0; k0; n0) = S0

L�1X
n=0

x[n+ n0]a
n
0 e
�j2�k0n=K (17)

= S0 DFTK fx[n+ n0] a
n
0 gjk0



which shows that FFT algorithms can be used to reduce
the cost of the correlation computation over the frequency
index. Note that such an FFT-based simpli�cation can be
applied to any dictionary of harmonically modulated atoms.
As mentioned earlier, correlations with complex atoms

are generally complex; the computation of �(a0; !0; n0) thus
provides both a magnitude and a phase for the signal ex-
pansion. For real atoms, however, the phase becomes part
of the index set and appears explicitly in each atom. As a
result, the structure of the correlation with real atoms does
not allow for the simpli�cations discussed above. In the real
case, then, not only is the dictionary larger because of the
phase index, but the computation is adversely a�ected as
well. These problems can both be avoided while maintain-
ing the advantages of the complex approach by considering
signal expansions in terms of conjugate pairs.

4.2. Real Damped Sinusoids

A decomposition in terms of real damped sinusoids can be
arrived at by using the subspace matching pursuit algorithm
discussed in section 2 to search for optimal conjugate pairs
of complex damped sinusoids to use in the expansion. At
the i-th iteration, this algorithm searches for the atom gm(i)

that minimizes the two-norm of the residual

ri+1[n] = ri[n]� �i(1)gm(i)[n]� �i(2)g
�

m(i)[n]: (18)

As shown in section 2, if ri[n] is real, the expansion coe�-
cients are conjugates and the new residual ri+1 is also real.
Equations 9 and 10 in section 2 show that the expansion
coe�cients and the maximization metric in this pursuit are
both functions of the correlation of the residual with the
underlying complex dictionary atoms; this means that the
computational simpli�cations for the complex dictionary
can be readily applied to calculation of a real expansion.
The decomposition found by this approach is

2
X
i

<
�
�i(1)gm(i)[n]

	
(19)

which can be written explicitly as

2
X
i

SiAia
(n�ni)

i cos [!i(n� ni) + �i] (20)

where Aie
j�i = �i(1). As in the complex case, the phases of

the atoms in this real decomposition are provided directly
by the computation of the expansion coe�cients; the real
decomposition is derived without requiring the phase as a
dictionary index. Furthermore, the dictionary for this con-
jugate search is e�ectively half the size of the full complex
dictionary since atoms are considered in conjugate pairs.
One caveat to note is that the conjugate pursuit algo-

rithm breaks down if the atom g is purely real; this oc-
curs because the derivation in section 2 requires that the
atom and its conjugate be linearly independent, i.e. the
atom must have non-zero real and imaginary parts. Thus,
a �x is required if real unmodulated exponentials, which
are elements of the complex dictionary, are to be admit-
ted in the real signal expansions. The i-th stage of the
�xed overall algorithm is as follows: �rst, the correlations
� = hg; rii for the entire dictionary of complex atoms are
computed using the simpli�cations of section 4. Then,
energy-minimizing metrics for both types of atoms are com-
puted and stored: for real g, the metric is j�j2 as indicated
in equation 4; for complex g, the metric is ���(1)+���(1),
where �(1) = (� � ���)=(1� j�j2) and � = hg; g�i is given
by

�(a0; !0) = S
2
0

�
1� a2L0 e�j2!0L

1� a20e
�j2!0

�
: (21)

These metrics provide the proper comparison of the energy
reduction of the residual for the two cases; maximization
over these metrics indicates which real component should be
added to the signal expansion at the i-th stage to minimize
the energy of the new residual ri+1.

5. CONCLUSIONS

Generalizing the matching pursuit algorithm to �nding op-
timal dictionary subspaces provides a framework for com-
puting real expansions of real signals using complex atoms.
Fundamentally, this is based on projecting onto the sub-
space spanned by an atom and its conjugate. This method
is advantageous over matching pursuit with real atoms in
that it simpli�es the treatment of the phase of the expansion
components. For decompositions in terms of real damped
sinusoids, this method allows for the use of fast correlation
algorithms that apply to an underlying dictionary of com-
plex damped sinusoids. The use of damped sinusoids for
signal decompositions is motivated by the commonality of
damped oscillations in natural signals and the shortcom-
ings of symmetric atoms for representing transient signal
behavior. Future work includes exploration of this approach
and other similarly aggressive methods for audio coding and
analysis{modi�cation{synthesis as well as comparisons with
the high-resolution matching pursuit discussed in [3].
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