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ABSTRACT

We discuss the existence of classes of quadratic time-freq-
uency representations (QTFRs), e.g. Cohen, power, and
generalized time-shift covariant, that satisfy a time-frequen-
cy (TF) concentration property. This important property
yields perfect QTFR concentration along group delay curves.
It also (1) simpli�es the QTFR formulation and property
kernel constraints as the kernel reduces from 2-D to 1-D, (2)
reduces the QTFR computational complexity, and (3) yields
simpli�ed design algorithms. We derive the intersection of
Cohen's class with the new power exponential class, and
show that it belongs to Cohen's localized-kernel subclass.
In addition to the TF shift covariance and concentration
properties, these intersection QTFRs preserve power expo-
nential time shifts, important for analyzing signals passing
through exponentially dispersive systems.

1. INTRODUCTION

Quadratic time-frequency representations (QTFRs) can be
grouped into classes based upon covariance properties that
they satisfy. Cohen's class QTFRs [1, 2, 3] are covariant
to constant time-frequency (TF) shifts, a�ne class QTFRs
[4, 2, 3] are covariant to dilations and constant time shifts,
and the hyperbolic class [5, 6] and power classes QTFRs
[7, 5] are covariant to dilations and dispersive time shifts.

In this paper, we focus on subclasses of QTFRs whose
kernels have a localized structure. Such QTFRs satisfy a TF
concentration property, an important property that yields
perfect concentration of the QTFRs along speci�ed group
delay curves for certain types of signals. This concentration
property of a QTFR TXc(t; f) of a signal xc(t) (with Fourier
transform Xc(f)) is given by

Xc(f)=r(f)e
�j2�c�(

f

fr
)
) TXc(t; f)=r2(f)�(t� c�(f)): (1)

Thus, given the signalXc(f) with amplitude function r(f)�
0 and one-to-one phase function �(b) 2 IR, we want the
QTFR to be perfectly concentrated along the signal's group
delay c�(f)=c d

df
�( f

fr
). Here, fr > 0 is a �xed reference

frequency. This property results in a simpli�cation of the
signal-independent 2-D kernel to a 1-D localized-kernel char-
acterizing the QTFRs. The localized-kernel idea was intro-
duced by the Bertrands based upon tomography [8], and
then extended by others to the a�ne localized-kernel sub-
class [4, 9, 10], and to the hyperbolic localized-kernel sub-
class [6, 5]. In this paper, we investigate the subclass of
QTFRs that satisfy the TF concentration property in (1)
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for other known QTFR classes such as Cohen's class [1, 2, 3]
and the power classes [7, 5].

In addition, we consider classes of QTFRs that satisfy
the generalized time-shift covariance property de�ned as

(D(�)
c X)(f) = e

�j2�c �(
f

fr
)
X(f))

T
D
(�)
c X

(t; f) = TX(t� c � (f); f) (2)

with � (f)= d
df
�( f

fr
) and �(b) a one-to-one function [11, 12].

We derive the concentration property kernel constraints for
these generalized time-shift covariant classes, thus providing
a unifying framework for many localized-kernel QTFRs.

2. COHEN's LOCALIZED-KERNEL QTFRs

Any Cohen's class [1] QTFR, T
(C)

X (t; f), with signal-indepen-
dent kernel, satis�es the time-shift covariance property given
by (2) with �(b)=b and � (f)=1=fr, and the frequency-shift
covariance property de�ned as

(M�X)(f) = X(f � �)) T
(C)

M�X
(t; f) = T

(C)

X (t; f��): (3)

These shift covariances are important in applications where
the TF structure is analyzed with constant TF resolution
such as in speech. Based on the TF shift covariance proper-
ties, any member of Cohen's class can be expressed in terms

of a 2-D kernel �
(C)

T (f̂ ; �) [2, 3]

T
(C)

X (t; f) =

R R
�
(C)

T (f � f̂ ; �)UX(f̂ ; �) e
j2�t�df̂d� (4)

where1 UX(f̂ ; �)=X(f̂ + �=2)X�(f̂ � �=2). Two interesting
Cohen's class QTFRs are the Wigner distribution (WD)
and Cohen's counterpart of the �th power Bertrand distri-
bution [5] (CBD�, � 6= 0). These QTFRs are de�ned as

in (4) with well-localized kernels given by �
(C)

WD(f̂ ; �)=�(f̂)

and �
(C)

CBD�
(f̂ ; �)=�

�
f̂ � fr

�
ln [sinh( ��

2fr
)
�
��
2fr

]
�
; they result

in highly concentrated representations for linear and expo-
nential chirps, respectively.

We propose Cohen's localized-kernel subclass (LCC) as
the subclass of QTFRs consisting of all Cohen's class QT-

FRs whose kernel �
(C)

T (f̂ ; �) in (4) is perfectly localized

along a curve f̂=F
(C)

T (�) in the (f̂ ; �)-plane, i.e.

�
(C)

T (f̂ ; �) = G
(C)

T (�) �(f̂ � F
(C)

T (�)): (5)

The 2-D kernel of each LCC QTFR is reduced to two, 1-D

functions, F
(C)

T (�)2 IR and G
(C)

T (�)�0, that uniquely char-
acterize the QTFR. This greatly simpli�es the QTFR analy-
sis as it reduces the LCC formulation in (4) to

T
(C)

X (t; f)=
R
G
(C)

T (�)UX(f�F
(C)

T (�); �) ej2�t�d�, i.e. from
two integrals to just one integral. Furthermore, it simpli�es
the kernel constraints for desirable QTFR properties [2].

1Unless otherwise speci�ed, integration limits are �1 :1.



The LCC is also important as it contains all Cohen's
class QTFRs that satisfy the TF concentration property in
(1). In particular, we show next that the localized-kernel
structure in (5) is necessary for the corresponding QTFR
to satisfy the TF concentration property along group delay
curves in (1) [9]. For a given r(f) and �(b) in (1), and if

�
(C)

f;�
(f̂)

4
= �((f � f̂ + �=2)=fr) � �((f � f̂ � �=2)=fr) is

assumed to be one-to-one and di�erentiable for �xed f; �,
then (1) is satis�ed by a Cohen's class QTFR if and only if
the following three conditions are satis�ed:

C{I There exists a real function F
(C)

T (�), independent of

f , that satis�es �
(C)

f;� (F
(C)

T (�))=��(f) for all f; �2 IR.

C{II The ratio r2(f)=R
(C)

f;� (f̂) is independent of f , where

R
(C)

f;� (f̂)
4
= r(f � f̂ + �=2) r(f � f̂ � �=2).

C{III The kernel �
(C)

T (f̂ ; �) of the LCC is given by (5) with

G
(C)

T (�)=r2(f)=R
(C)

f;� (F
(C)

T (�)) � 0.

In particular, �xing r(f)=e
�f

2fr , � 6= 0, condition C{II

always holds with G
(C)

T (�) = e
�
fr

F
(C)

T
(�)

. For example, if
�(b)=b in property (1), condition C{I is satis�ed for arbi-

trary F
(C)

T (�). If �(b)=e�b, then the TF concentration prop-
erty for power exponential chirps Xc(f) in (1) is satis�ed by

Cohen's class QTFRs with F
(C)

T (�)= fr
�
ln [sinh( ��

2fr
)
�
��
2fr

]

and G
(C)

T (�)=e
�
fr

F
(C)

T
(�)

=sinh( ��
2fr

)
�
��
2fr

in (5).

Some LCC QTFRs include the Wigner distribution (with

1-D kernels in (5) given by G
(C)

WD(�)=1 and F
(C)

WD(�)=0) and

the CBD� (with 1-D kernels in (5) given by G
(C)

CBD�
(�)=1

and F
(C)

CBD�
(�)= fr

�
ln [sinh( ��

2fr
)
�
��
2fr

]). Next, we propose

another important localized-kernel subclass member, Co-
hen's intersection with the new �th power exponential class.

2.1. Intersection with Power Exponential Classes

The �th power exponential class is obtained by exponen-
tially warping [12] the �th power class [7, 5]. Any member

of this new class, T
(E�)

X (t; f), � 6= 0, satis�es two covari-
ance properties: the frequency-shift covariance in (3), and
the power exponential time-shift covariance (de�ned as in

(2) with �(b)=e�b and �(f)= �
fr
e
�
f

fr ), which is an impor-

tant property for analyzing signals passing through expo-
nentially dispersive systems. Based on these two covari-
ance properties, any power exponential QTFR can be writ-

ten as T
(E�)

X (t; f) = j�j

fr

R R
�
(E�)

T ( f1�f
fr

; f2�f
fr

)X(f1)X
�(f2)

e
j2�t

fr
�

�
e
�
fr

(f1�f)
�e

�
fr

(f2�f)
�
df1df2 where �

(E�)

T (b1; b2) is a

2-D kernel characterizing T (E�). An important power ex-
ponential QTFR is the CBD�. When �=1, the power ex-
ponential class simpli�es to the exponential class [12].

If we constrain any member of Cohen's class in (4) to
satisfy the power exponential time-shift covariance, the re-
sulting constraint on Cohen's class kernel is given by

�
(C)

T (f̂ ; �)=G
(C)

T (�)�(f̂�F
(C)

CBD�
(�)). Note that this is in the

form of the localized-kernel in (5) with G
(C)

T (�) arbitrary,

but F
(C)

T (�)=F
(C)

CBD�
(�)= fr

�
ln [sinh( ��

2fr
)
�
��
2fr

] �xed to the

F
(C)

T (�) function of the CBD�. Thus, the intersection be-
tween Cohen's and the power exponential class is a subclass

of the LCC. Any intersection member, T
(C\E�)

X (t; f), such

as the CBD�, only needs the 1-D kernel G
(C)

T (�) to charac-

terize it. Also, any T
(C\E�)

X (t; f) is a smoothed CBD�,

T
(C\E�)

X (t; f) =

R
g
(C)

T (t� t̂ ) CBD�( t̂; f) dt̂; (6)

where g
(C)

T (t) is the inverse Fourier transform of G
(C)

T (�) in
(5). For �=1, the intersection in (6) simpli�es to another
member of the LCC, the intersection of Cohen's class with
the exponential class [12, 13]. The intersection in (6) can
also be obtained by exponentially warping the intersection
of the �th power class with the hyperbolic class [5, 6].

3. POWER LOCALIZED-KERNEL QTFRs

The �th power class consists of QTFRs that satisfy the
scale covariance and the power time-shift covariance prop-
erties [7, 5]. The power time-shift covariance is de�ned as in
(2) with �(b)=��(b)=sgn(b)jbj

� and � (f)=��(f)=
d
df
��(

f

fr
),

and it is important for multiresolution analysis of signals
propagating through power dispersive systems. Based on

these two covariances, any power QTFR, T
(P�)

X (t; f), � 6=0,
can be expressed as

T
(P�)

X (t; f) =
1

j��(
f

fr
)j

Z Z
�
(P )

T

�
�b

��(
f

fr
)
;

�

��(
f

fr
)

�
V
(�)

X (b;�)

�e
j2� t

��(f)
�
db d� (7)

where V
(�)

X (b; �)=frUW�X(frb; fr�) is the product in (4)
of the power warped [7] signal (W�X)(f). The 2-D kernel

�
(P )

T (b; �) uniquely characterizes any power QTFR T (P�).
The �th power class can also be obtained by power warping
the a�ne class [7, 5].

The �th power localized-kernel subclass (LPC�) consists
of all power QTFRs that also satisfy the TF concentration
property (1). This subclass provides the generalization of
the a�ne localized-kernel subclass [9, 10] since for �=1 the
power class reduces to the a�ne class. The LPC� consists of

all power QTFRs whose kernel �
(P )

T (b; �) in (7) is perfectly

localized along a curve b=F
(P )

T (�) in the (b; �)-plane,

�
(P )

T (b; �) = G
(P )

T (�) �(b� F
(P )

T (�)); (8)

where F
(P )

T (�)2 IR and G
(P )

T (�)�0 are 1-D functions that

characterize the QTFR T (P�). When the reduced kernel in
(8) is inserted in (7), it simpli�es the formulation of LPC�
QTFRs. It also simpli�es the property kernel constraints
for the power classes [5] to be in terms of two 1-D functions.

Power QTFRs satisfy the TF concentration property (1)
if and only if their kernel has the structure in (8) resulting
from three conditions listed below. If the functions r(f)

and �(b) in (1) are given, if �
(P )

f;� (b)
4
= �( f

fr
� 1
�
(�b + �

2
)) �

�( f
fr
� 1
�
(�b � �

2
)) (for ��(b) in (7)) is assumed one-to-one

and di�erentiable for �xed f; �, and if � 6=0, then

P{I There exists a function F
(P )

T (�), independent of f ,

that satis�es �
(P )

f;� (F
(P )

T (�))= f

�
�(f)� for all f; �2 IR.

P{II The ratio r2(f)=R
(P )

f;� (b) is independent of f where

R
(P )

f;� (b)=jb
2� �2

4
j
1��
2� r(f� 1

�
(�b+ �

2
))r(f� 1

�
(�b� �

2
)).

P{III The kernel �
(P )

T (b; �) of the LPC� is given by (8)

with G
(P )

T (�)=r2(f)=R
(P )

f;� (F
(P )

T (�)) �0.



Class �
(class)
f;� (b) R

(class)
f;� (b)=fr�(f) Condition G{I Condition G{II Condition G{III

GC or �(�
(class)
f;� (b))� r(fr�

(class)
f;� (b))r(fr�

(class)
f;�� (b)) �

(class)
f;� (F

(class)
T (�)) G

(class)
T (�)= �

(class)
T (b; �)=

GA �(�
(class)
f;�� (b)) �j�0(�

(class)
f;� (b))�0(�

(class)
f;�� (b))j�

1
2 =�(class)(f) � r2(f)

R
(class)
f;�

(F
(class)
T

(�))

G
(class)
T (�)�(b� F

(class)
T (�))

Table 1:Necessary conditions for generalized warped Cohen's (class = GC) or generalized warped a�ne (class = GA) QTFRs

to satisfy the TF concentration property in (1). Here, �
(GC)

f;� (b)=��1(�( f
fr
)� b+ �

2
) and �

(GA)

f;� (b)=��1(�( f
fr
)(�b+ �

2
)) where

�(b) is given in (9) and (10). Also, �(GC)(f)=�(f)=� (f) and �(GA)(f)=�( f
fr
)�(f)=�(f).

Condition P{II is always satis�ed if r(f)=r0jf j
�, r0>0,

�2 IR, in which case G
(P )

T (�)=j(F
(P )

T (�))2� �2

4
j
��1�2�

2� . For

a given �(b), one must �nd an F
(P )

T (�) to satisfy condition
P{I. In particular, if �(b)=��(b), then LPC� QTFRs sat-

isfy (1) for arbitrary F
(P )

T (�) and �xed G
(P )

T (�) as above.

If �(b)=ln b, then P{I is satis�ed for F
(P )

T (�)=��

2
coth (�

2
)

and G
(P )

T (�) simpli�es to ( �=2

sinh (�=2)
)
��1�2�

� .

Some QTFRs of the LPC� include the power Wigner

distribution,W
(�)

X (t; f), withG
(P )

W (�) (�)=�F
(P )

W (�) (�)=1, and

the power Bertrand distribution, P
(�)

0 (t; f), with 1-D ker-

nels G
(P )

P
(�)
0

(�) = �

2
= sinh(�

2
) and F

(P )

P
(�)
0

(�)=��

2
coth(�

2
). An

important subclass of the LPC� is the intersection between
the �th power and hyperbolic classes [5, 6]. Any power
QTFR that belongs in the intersection also satis�es the hy-
perbolic time-shift covariance property (de�ned as in (2)
with �(b)=ln b and �(f)=1=f), and its kernel in (7) is given

by �
(P )

T (b; �)=G
(P )

T (�)�(b + �

2
coth(�

2
)). The intersection

kernel has the localized-kernel form (8) with G
(P )

T (�) arbi-

trary, but F
(P )

T (�)=F
(P )

P
(�)
0

(�)=��

2
coth(�

2
) �xed to that of

the power Bertrand distribution. Thus, intersection QT-
FRs also satisfy the TF concentration property (1). As the
intersection QTFRs satisfy at least four desirable proper-
ties, the QTFR formulation is simpli�ed even further, and
the number of possible applications is increased.

4. GENERALIZED WARPED

LOCALIZED-KERNEL QTFRs

Generalized time-shift covariant QTFRs satisfy the general-
ized time-shift covariance property in (2) for given �(b) and
�(f) [11, 12]. These QTFRs are especially useful when the
shift is matched to group delay functions �(f), and they
are important for analyzing signals passing through sys-
tems with matched group delay characteristics. Two QTFR
classes that satisfy (2) are the generalized warped Cohen's
class and the generalized warped a�ne class [11, 12, 14].
These two classes depend on the choice of �(b) in (2) that
de�nes the type of warping applied to either Cohen's class or
to the a�ne class. Thus, the generalized warped classes pro-
vide a unifying framework for Cohen's, a�ne, hyperbolic,
power, exponential, and power exponential classes [12].

QTFRs of the generalized warped Cohen's class (GC),

T
(GC)

X (t; f), are obtained by warping Cohen's class QTFRs
[12, 14] using a mapping speci�ed by �(b). Any GC QTFR

can be expressed in terms of a 2-D kernel �
(GC)

T (b; �) as

T
(GC)

X (t; f)=

ZZ
�
(GC)

T (�(
f

fr
)� b; �)VX(b; �)e

j2�
t�

�(f) dbd� (9)

where VX(b; �)=frUW�X(frb; fr�) and the warped signal is

(W�X)(f)=X(fr�
�1( f

fr
))=j�0(��1( f

fr
))j1=2 with ��1(�(b))=b

and �0(b)= d
db
�(b). For �(b)=b, the GC in (9) is Cohen's class

in (4), and for �(b)=ln b, the GC yields the hyperbolic class

[5]. Any generalized warped a�ne class (GA), T
(GA)

X (t; f),
is obtained by warping the a�ne class [12, 14], and can be

written in terms of a 2-D kernel �
(GA)

T (b; �) as

T
(GA)

X (t; f)=

ZZ
�
(GA)

T

�
�b

�( f
fr
)
;
�

�( f
fr
)

�
VX(b; �)e

j2�
t�

�(f)
dbd�:

j�( f
fr
)j
(10)

The choice of �(b) determines the class to which the GA in
(10) simpli�es. For �(b)=b the GA is the a�ne class, for
�(b)=��(b) it is the �th power class in (7), and for �(b)=e�b

it is the �th power exponential class given in Section 2.1.
Here, we propose a localized-kernel subclass of the GC

and a localized-kernel subclass of the GA. Speci�cally, we
want to group together generalized QTFRs that satisfy the
TF concentration property in (1), and provide perfect con-
centration of the QTFR along given group delay curves.
Such QTFRs will necessarily have a kernel with a localized
structure as we will show next. For example, the local-
ized GC consists of all generalized warped Cohen's QTFRs
whose 2-D kernel in (9) is perfectly localized along a curve

b=F
(GC)

T (�) in the (b; �)-plane,

�
(GC)

T (b; �) = G
(GC)

T (�) �(b� F
(GC)

T (�)); (11)

where F
(GC)

T (�) 2 IR and G
(GC)

T (�) � 0 are 1-D functions

that characterize T (GC). All localized GA QTFRs in (10)
have the same localized-kernel structure as in (11), but with
(GC) replaced with (GA).

GC and GA QTFRs satisfy the TF concentration prop-
erty (1) if and only if the conditions listed in Table 1 hold.
For example, to determine whether a GC QTFR satis�es
property (1) for a given �(b), we �rst need to check whether

a frequency-independent kernel, F
(GC)

T (�), exists that sat-

is�es condition G{I in Table 1 . If F
(GC)

T (�) does not exist,
then there does not exist any GC QTFR satisfying (1). If

a kernel F
(GC)

T (�) satisfying condition G{I exists, then we
substitute it in the frequency-independent ratio in condition

G{II to form G
(GC)

T (�) for a given r(f). Lastly, condition
G{III yields the localized-kernel structure in (11).

It is important to note that when the analyzing sig-
nal's phase function �(b) in (1) equals the function �(b)
that speci�es the generalized time-shift covariant class in
GC (9) (resp. GA (10)), condition G{I always holds for
the localized GC (resp. localized GA) in Table 1. Speci�-

cally, when �(b)=�(b) in Table 1, then �
(GC)

f;� (F
(GC)

T (�))=�

for the GC and �
(GA)

f;� (F
(GA)

T (�))=�( f
fr
)� for the GA, and



Generalized warped r(f) G
(class)
T (�) F

(class)
T (�) in (11) for

classes in (9) or (10) in (1) in (11) �(b)=b �(b)=ln b �(b)=��(b) �(b)=e�b

Cohen's (C);
�(b)=b in (9)

r0 e
�f
2fr e

�
fr
F
(C)

T
(fr�) arbitrary fr

�
ln [sinh(��

2
)/��

2
]

Hyperbolic (H);
�(b)=ln b in (9)

r0 jf j
�

e(1+2�)F
(H)

T
(�) ln [sinh(�

2
)/�

2
] arbitrary 1

�
ln [sinh(��

2
)/��

2
]

A�ne (A);
�(b)=b in (10)

r0 jf j
�

j(F
(A)
T (�))2 � �2

4
j
�� arbitrary �

�

2
coth(�

2
)

Power (P);
�(b)=��(b) in (10)

r0 jf j
�

j(F
(P )
T (�))2 � �2

4
j

��1�2�
2� �

�

2
coth(�

2
) arbitrary

Power Exponential (PE);
�(b)=e�b in (10)

r0 e
�f
fr j(F

(PE)
T (�))2 � �2

4
j

��2�
2� �

�

2
coth(�

2
) arbitrary

Table 2: The 1-D kernels FT (�) and GT (�) for various generalized warped QTFR classes necessary for TX(t; f) to satisfy

the TF concentration property (1) for given signal parameters r(f) and �(b). The choice of r(f) (resp. �(b)) only a�ects the

form of GT (�) (resp. FT (�)). Blank entries indicate that we did not �nd an FT (�) to satisfy condition G{I in Table 1.

condition G{I holds for arbitrary F
(GC)

T (�) and F
(GA)

T (�)
kernels. This is further demonstrated in Table 2 where we
computed the GT (�) and FT (�) kernels for various choices
of signal parameters �(b) and r(f) in (1), and for vari-
ous choices of time shift parameter �(b) in (9) and (10).
For example, when �(b)=��(b)=sgn(b)jbj

� in (7), the local-
ized GA is the �th power localized-kernel subclass in Sec-
tion 3. From Table 2, if r(f)=r0jf j

�=f�1=2 and �(b)=ln b

(such that Xc(f)=f
�1=2e�j2�c ln f=fr in (1) is a hyperbolic

chirp), then the kernels simplify to the kernels of the power

Bertrand distribution, i.e. F
(GA)

T (�)=F
(P )

T (�)=��

2
coth (�

2
)

and G
(GA)

T (�)=G
(P )

T (�)= �=2

sinh (�=2)
. Thus, the generaliza-

tion simpli�es to known results which state that the power
Bertrand distribution is perfectly concentrated along hyper-
bolae in the TF plane for hyperbolic chirps [5].

The localized-kernel structure in Table 2 is also impor-
tant as it simpli�es the formulation and property kernel
constraints for a GC or GA QTFR [13], as its 2-D ker-
nel is now in terms of two 1-D kernels. The localized GC
and the localized GA are also important as they provide a
unifying framework for many localized-kernel QTFR sub-
classes. From Tables 1 and 2, the localized GC simpli-
�es to Cohen's localized-kernel subclass in Section 2 when
�(b)=b and G

(GC)

T (�)=G
(C)

T (fr�), frF
(GC)

T (�)=F
(C)

T (fr�),

�
(GC)

f;� (b)=�
(C)

f;fr�
(frb), and R

(GC)

f;� (b)=R
(C)

f;fr�
(frb). When

�(b)=ln b, the localized GC simpli�es to the hyperbolic local-
ized-kernel subclass [6]. Similarly, the localized GA sim-
pli�es to the a�ne localized-kernel subclass [9, 10] when
�(b)=b, to the �th power localized-kernel subclass in Section
3 when �(b)=��(b), and to the exponential localized-kernel
subclass [13] when �(b)=eb.

5. CONCLUSION

The TF concentration property in (1) is an important prop-
erty as it provides perfectly concentrated analysis of a signal
along its group delay function. We showed that when con-
straining a QTFR to satisfy this property, the QTFR's ker-
nel must necessarily have a localized structure, and we de-
rived this kernel structure for known classes of QTFRs such
as Cohen's class and the power classes. We further gener-
alized the localized-kernel subclasses to provide a unifying
framework for all generalized-time shift covariant QTFR
classes including Cohen's class, the a�ne class, the hyper-
bolic class, the �th power class, the exponential class, and

the �th power exponential class. As the localized-kernel
structure reduces the 2-D kernel of the various classes to
two, 1-D kernels, the localized-kernel subclasses have sim-
pli�ed formulations and kernel constraints. The structure
can also reduce the QTFR computational complexity and
provide more intuitive QTFR design algorithms.
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