
ABSTRACT

We propose a property for kernel design which  results
in distributions for each of two classes of signals which
maximally separates their energies in the time-frequency
plane.  Such maximally separated distributions may result in
improved classification because the signal representation is
optimized to accentuate the differences in signal classes.
This is not the case with other time-frequency kernels which
are optimized based upon some criteria unrelated to the
classification task.  Using our operator theory formulation
for time-frequency representations, our “maximal
separation” criteria takes on a very easily solved form.
Analysis of the solution in both the time-frequency and
ambiguity planes is given along with an example on  discrete
signals.

1.  INTRODUCTION

A single discrete signal is associated with an essentially
infinite set of quadratic time-frequency distributions (TFDs)
through appropriate choices for the kernel function.  Useful
kernels can be selected by incorporating into the kernel
design properties that are desired in the end distribution.

Kernel design for quite a number of “desired properties”
has been researched, most notably design for suppression of
distracting cross terms [1][2][3].  By making the kernel
signal-dependent, a wider variety of properties can be
obtained in the TFD.  For example,proper distributions
(distributions which are nonnegative and have physically
meaningful marginal distributions) can be obtained
[4][5][6].  These methods begin with a prior distribution that
is not proper, and iteratively calculate that proper
distribution which is nearest, by some measure, to the
original distribution. A method for computing proper, signal
dependent distributions without a prior has been developed
[7], but the marginal constraints must be altered to achieve
this.  Though some of these TFDs may offer advantages in
classification of certain types of signals, they cannot hope to
offer improved signal discrimination for all signals because
discrimination is not one of the goals of the kernel design
procedure.

We present a kernel design procedure in which signal
discrimination (in the time-frequency plane) is theonly goal.
Using our operator theory formulation for TFDs, we are able
to easily develop a closed-form solution for an optimally
discriminating kernel which is not signal dependent, but
signal class dependent.  Use of TFDs for signal classification
[8] and detection [9][10] (a similar problem) has been
researched previously, but from the point of view of
discovering which, if any, of the existing TFDs might
succeed with certain signal types.  The idea of custom
designing kernels has been explored [11], but not with an eye
to classification.

We begin with a discussion of operator theory and our
application of this to time-frequency analysis.  We then
discuss our kernel design procedure from both the time-
frequency perspective and the ambiguity plane perspective
which provides valuable insight into the nature of our
operator theory formulation as well as our kernel design
process.  We conclude with a simple example.

2.  OPERATOR THEORY

Just as the discrete wavelet transform does not need to
be viewed in the context of the continuous version, discrete-
time discrete-frequency distributions do not need to be
viewed simply as sampled versions of their continuous
counterparts [12][13]. Here, we present a means of directly
connecting a discrete-time discrete-frequency distribution
with a discrete, finite-length input signal through the use of
a discrete version of operator theory [14]. Though operator
theory has been invoked in the generation of discrete-time
discrete-frequency TFDs in the past [15], it has not been
used in this context. With this in hand, we develop a wholly
new expression for discrete-time, discrete-frequency
distributions.  A more detailed discussion is given in [12].

 We first define two operators,L andK such that

and

x∗ n[ ] K x n[ ]{ }
n
∑ E X k[ ]{ }=
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whereE{} is the expectation operation. The operatorL is
just the sequence {-(N-1)/2, ... 0, ... (N-1)/2} which can be
written as a diagonal matrix with this sequence along the
diagonal, andK is the inverse discrete Fourier transform of
the sequence {-(N-1)/2, ... 0, ... (N-1)/2}.K is circulant
when written in matrix form as it performs a circular
convolution as its method of operation.

The discrete TFD can be computed from these operators
by first calculating the characteristic function, M[θ, m], and
then performing a two-dimensional Fourier transform:

Here, we make use of the correspondence rule, which maps
permutations of the terms in the exponent to a kernel
function φ[θ,m], which is a scalar function ofθ and m.
Expressing the above equation in matrix notation (and using
H to indicate the conjugate transpose), we obtain (after the
2-D Fourier transform) the TFD.

(1)

F is the unitary Fourier transform matrix (F = KLKH), and
the .* operation indicates an element-by-element
multiplication. Φ is a function ofn andk only in that for
different values of these variables, theΦ matrix has its rows
and/or columns circularly shifted.  This results in a kernel
which is effectively circularly convolved with some other
matrix to yield the TFD.

While (1) may seem to be simply a rewriting of the
conventional expression for a discrete TFD, we must remark
here that whereas the conventional expression generates a
TFD from the convolution of a discrete approximation of the
Wigner distribution of the signal with the kernel, our
expression generates a TFD from thecircular convolution of
the kernel with the Rihaczek distribution [16] of the signal.

3.  CLASS-DEPENDENT DISTRIBUTIONS

Time-Frequency Plane
We wish to find a kernel such that the TFDsP1 andP2

for each of two signal classes are maximally separated:

(2)

(For the moment, we assume for simplicity that there is
only one representative signal for each class.)

We begin our simplifications by noting that for a single
ordered pair (n,k) and a given input signalx, the right-hand

x∗ n[ ] L x n[ ]{ }
n
∑ E x n[ ]{ }=
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side of (1) is a linear combination of the elements ofΦ. Let
us write the coefficients of this linear combination as the
column vectorx1. This vector contains the elements of the
discrete  Rihaczek distribution.  Asn andk change, the rows
and columns ofΦ shift, but this shift can  also be captured
by rearranging the elements ofx1. So, by reshaping theΦ
matrix into a vectorΦ, (1) can be rewritten as

  where (3)

The x1, ..., xN are column vectors containing the same
elements, but in different orders. The elements of the
distributionP[n,k] are now all contained in the vectorP.

Having done this, we can rewrite (2) as

(4)

The expression in brackets is of the formyHBy which
appears commonly in matrix algebra.  It is maximized when
y is the eigenvector corresponding to the largest eigenvalue
of the matrixB.  Thus, we can calculate the kernel that
produces maximal separation by performing an eigenvalue
decomposition on (X1-X2)

H(X1-X2).

Ambiguity Plane
For a signal of lengthN, theX matrix as given in (3) is

of sizeN2xN2.  For a signal of any useful length, performing
an eigenvalue decomposition on a matrix of such size (even
calculating the single eigenvector associated with the largest
eigenvalue) is a lengthy process at best.  Fortunately, we can
circumvent this computation completely while obtaining the
decomposition exactly by merely viewing the problem from
the ambiguity plane, the two-dimensional Fourier transform
of the time-frequency plane.

In the time-frequency plane, a TFD is computed from a
kernel via a 2-D circular convolution, therefore the same
TFD can be computed in the ambiguity plane via an element
by element multiplication of the 2-D Fourier transforms of
the matrices involved.  Transforming (3) to the ambiguity
plane then, we have:

A may be obtained fromP by rewritingP as a matrix, taking
the 2-D discrete Fourier transform and then revectorizing
the result.  The same method transformsΦ into Ψ, and the
first column ofX in (2) into the diagonal ofY. Y is a strictly
diagonal matrix, whose diagonal contains the elements of
the 2-D discrete Fourier transform of the Rihaczek
distribution of the signal. (4) can now be written in the
ambiguity domain as:

P XTΦ= X x1 … xN
=

max ΦH
X1 X2–( ) H X1 X2–( ) Φ{ }

A YΨ=



(5)

As Y1 and Y2 are diagonal matrices, the eigenvalue
decomposition is trivial in this domain.

Looking at the kernel design in the ambiguity plane  can
also give us insight into what is actually being done.  The
kernel accentuates regions of maximum absolute  difference
(in the ambiguity function) of the Rihaczek distributions of
the signals.

4.  EXAMPLE

Two 128-point discrete signals were used to develop an
optimally discriminating kernel.  Figure 1 shows
diagrammatically the two signals used.  The first is a real
chirp running from a normalized frequency of 0.2 to 0.8
Nyquist.  The other signal, again a real chirp, runs from 0.3
to 0.7.

Figure 2 shows the magnitude of the difference of the
Rihaczek distributions of these two signals in the ambiguity
plane.  The points of maximum difference are circled.  The
kernel, also plotted in the ambiguity plane and appearing in
the lower half of the figure, displays large values precisely at
the points where the differences are the greatest.  It should be
noted here that there are in fact eight equal and maximum
eigenvalues for this example.  Because all linear
combinations of eigenvectors corresponding to the same
eigenvalue are themselves eigenvectors, we’re free to
choose any weighting of these eight points for our kernel.
All satisfy our optimality criterion.

Figure 3 shows the TFDs of the two signals resulting
from the application of our kernel.  Note that there is little of
the expected time and/or frequency structure.  This is
because the kernel design criteria make no attempt to include
this. The kernel is geared strictly to achieving time-
frequency separation.  In this regard, we can see that it
succeeds; where the TFD for chirp 1 has large amounts of
energy, the TFD for chirp 2 has little resulting in minimal
overlap and maximal separation.

5.  DISCUSSION

Using the concepts of operator theory, we’ve been able
to forge a direct connection between a discrete, finite-length
input signal, and it’s discrete-time, discrete-frequency TFD.
With our approach, we represent each TFD as the 2-D
circular convolution of a kernel with the Rihaczek
distribution of the signal.

It is important to note that the kernel we obtain for
optimal separation maximizes the time-frequency difference
given the original distribution (the Rihaczek).  If the two
signal classes have very dissimilar Rihaczek TFDs, then our
method will find very little room for improvement.

max Ψ
H

Y1 Y2–( ) H Y1 Y2–( ) Ψ{ }
Can a base distribution other than the Rihaczek be used

to form theX matrices in (4)?  Yes.  Since one TFD can be
derived from any other with application of the appropriate
transforming kernel, any TFD may serve as an initial, base
distribution in our method.  The optimal discriminating
kernel will vary with the base TFD chosen, however, due to
the varying amounts of time-frequency similarity between
the signal classes.

Lastly, throughout this paper, we have assumed a single
representative signal for each class, but this constraint is not
necessary.  One way of incorporating multiple examples of
each class in (2) is to average all the individual TFDs for
class one and class two resulting in a representativeP1 and
P2  as is done in [8].  (This is tantamount to averaging theX
matrices in (4).) More effective means of combining
multiple examples may be possible.
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Figure 1: Diagrammatic representation of the two
chirps tested.
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Figure 2: (top) Magnitude of the difference between the
Rihaczek distributions of the two chirps, shown in the
ambiguity plane. (bottom) The optimal discrimination
kernel, also  shown in the ambiguity plane.  Note that
tau and eta are the transforms of  frequency  and time
respectively.  Also, points in the kernel have been en-
larged for clarity.
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Figure 3: TFD magnitudes produced with the optimal
discrimination kernel.  (top) Chirp 1. (bottom) Chirp 2.


