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ABSTRACT We present a kernel design procedure in which signal
) i discrimination (in the time-frequency plane) is timéy goal.

~ We propose a property for kernel design which resultgsing our operator theory formulation for TFDs, we are able
in distributions for each of two classes of signals whichg easjly develop a closed-form solution for an optimally
maximally separates their energies in the time-frequencyiscriminating kernel which is not signal dependent, but
plane. Such maximally separated distributions may result igigna| classlependent. Use of TFDs for signal classification
improved classification because the signal representation i§] and detection [9][10] (a similar problem) has been
optimized to accentuate the differences in signal classegasearched previously, but from the point of view of
This is not the case with other time-frequency kernels whiclyiscovering which, if any, of the existing TFDs might
are optimized based upon some criteria unrelated t0 thg,cceed with certain signal types. The idea of custom

classif_ication task. Using our operator theory formulgtiorhesigning kernels has been explored [11], but not with an eye
for time-frequency representations, our “maximalig c|assification.

separation” criteria takes on a very easily solved form. o _ _
Analysis of the solution in both the time-frequency and ~ We begin with a discussion of operator theory and our

ambiguity planes is given along with an example on discret@pplication of this to time-frequency analysis. We then
signals. discuss our kernel design procedure from both the time-

frequency perspective and the ambiguity plane perspective
which provides valuable insight into the nature of our
1. INTRODUCTION operator theory formulation as well as our kernel design
A single discrete signal is associated with an essentiallprocess. We conclude with a simple example.
infinite set of quadratic time-frequency distributions (TFDs)

through appropriate choices for the kernel function. Useful 2. OPERATOR THEORY
kernels can be selected by incorporating into the kernel _
design properties that are desired in the end distribution. Just as the discrete wavelet transform does not need to

, , s . _be viewed in the context of the continuous version, discrete-

Kernel design for quite a number of “desired propertiesime discrete-frequency distributions do not need to be
has been researched, most notably design for suppressionlwed simply as sampled versions of their continuous
distracting cross terms [1][2][3]. By making the kernelcqnterparts [12][13]. Here, we present a means of directly
signal-dependent, a wider variety of properties can bgonnecting a discrete-time discrete-frequency distribution
obtained in the TFD. For examplproper distributions ity g discrete, finite-length input signal through the use of
(distributions which are nonnegative and have physically giscrete version of operator theory [14]. Though operator
meaningful - marginal distributions) can be obtainedheory has been invoked in the generation of discrete-time
[4][5][6]. These methods begin with a prior distribution thatdiscrete—frequency TFDs in the past [15], it has not been
is not proper, and iteratively calculate that proper;seq in this context. With this in hand, we develop a wholly
distribution which is nearest, by some measure, to thggy expression for discrete-time, discrete-frequency

original distribution. A method for computing proper, signal yistriputions. A more detailed discussion is given in [12].
dependent distributions without a prior has been deveIopecJ

[7], but the marginal constraints must be altered to achieve  We first define two operators,andK such that
this. Though some of these TFDs may offer advantages in

classification of certain types of signals, they cannot hope to > O K{x[n} = E{X[K}

offer improved signal discrimination for all signals because n

discrimination is not one of the goals of the kernel design

procedure. and



0 _ side of (1) is a linear combination of the element$.afet
Y XHInIL{x[n]} =E{x[n} us write the coefficients of this linear combination as the
n column vectorx;. This vector contains the elements of the
whereE{} is the expectation operation. The operalois  discrete Rihaczek distribution. Asandk change, the rows
just the sequence {-(N-1)/2, ... 0, ... (N-1)/2} which can beand columns ofp shift, but this shift can also be captured
written as a diagonal matrix with this sequence along thgy rearranging the elements xf So, by reshaping th@
diagonal, anK is the inverse discrete Fourier transform of ,5trix into a vectom, (1) can be rewritten as
the sequence {-(N-1)/2, ... 0, ... (N-1)/2K is circulant
when written in matrix form as it performs a circular
convolution as its method of operation. P=X'® where X = [x x] 3)
The discrete TFD can be computed from these operators e o
by first calculating the characteristic functid8, m|, and
then performing a two-dimensional Fourier transform The xq, ..., % are column vectors containing the same

elements, but in different orders. The elements of the

j2mBL j2mmK distributionP[n,K are now all contained in the vectar
M[B, m = ZXD[H]({)[G, m| e N ¢ N x[n] Having done this, we can rewrite (2) as
n
Here, k f th d le, which H H
ere, we make use of the correspondence rule, which maps max{ 3" (X, = X,)" (X, = X,) B} @)

permutations of the terms in the exponent to a kernel
function @8,m], which is a scalar function & and m.
Expressing the above equation in matrix notation (and usim,gh
H to indicate the conjugate transpose), we obtain (after thgp
2-D Fourier transform) the TFD.

e expression in brackets is of the foy‘ﬁBy which

pears commonly in matrix algebra. It is maximized when

y is the eigenvector corresponding to the largest eigenvalue

" " of the matrixB. Thus, we can calculate the kernel that
P[nK =x (®,,y*F)F X (1)  produces maximal separation by performing an eigenvalue

decomposition onX{;-X,)™(X4-Xy).
F is the unitary Fourier transform matrik € KLKH), and .
the .* operation indicates an element-by-elemenf*Mbiguity Plane

multiplication. disa functic_)n ofn andk or_1|y in t'hat for For a signal of lengtN, theX matrix as given in (3) is
different values of these variables, thenatrix has its rows f sizeN’xN2. For a signal of any useful length, performing

al’tl-]C_i/ﬁl’_COhf,irmnt_S c;rcuiarl); Slh'ﬂed' -Iih'sd res_tL;]ItS In a ktehrne n eigenvalue decomposition on a matrix of such size (even
w ItC' Its el elg Exe Ynggcu arly convolved with some Other .o cyjating the single eigenvector associated with the largest
matrix to yield the THb. eigenvalue) is a lengthy process at best. Fortunately, we can

While (1) may seem to be simply a rewriting of the oj.o myent this computation completely while obtaining the
conventional expression for a discrete TFD, we must remar composition exactly by merely viewing the problem from
here that whereas the conventional expression generatega ambiguity plane, the two-dimensional Fourier transform
TFD from the convolution of a discrete approximation of theof the time-frequency plane
Wigner distribution of the signal with the kernel, our '
expression generates a TFD fromdhreular convolution of In the time-freq.uency plane, a TFD is computed from a
the kernel with the Rihaczek distribution [16] of the signal. kernel via a 2-D circular convolution, therefore the same

TFD can be computed in the ambiguity plane via an element

3. CLASS-DEPENDENT DISTRIBUTIONS by eIemE_.‘nt m_ultiplication of the 2-D Fourier transforms Of
the matrices involved. Transforming (3) to the ambiguity

Time-Frequency Plane plane then, we have:

We wish to find a kernel such that the THB)sandP, A=YV

for each of two signal classes are maximally separated: A may be obtained frof by rewritingP as a matrix, taking

max the 2-D discrete Fourier transform and then revectorizing
_ 2 the result. The same method transformsto W, and the

o) {gk|Pl[n, K =P, [n K[} @ first column ofX in (2) into the diagonal of. Y is a strictly

diagonal matrix, whose diagonal contains the elements of

éhe 2-D discrete Fourier transform of the Rihaczek

distribution of the signal. (4) can now be written in the

ambiguity domain as:

(For the moment, we assume for simplicity that there i
only one representative signal for each class.)

We begin our simplifications by noting that for a single
ordered pairr{,K and a given input signal the right-hand



Can a base distribution other than the Rihaczek be used
(5) to form theX matrices in (4)? Yes. Since one TFD can be
derived from any other with application of the appropriate
transforming kernel, any TFD may serve as an initial, base
As Y, and Y, are diagonal matrices, the eigenvaluedistribution in our method. The optimal discriminating
decomposition is trivial in this domain. kernel will vary with the base TFD chosen, however, due to
Looking at the kernel design in the ambiguity plane carthe varying amounts of time-frequency similarity between
also give us insight into what is actually being done. Thehe signal classes.
kernel accentuates regions of maximum absolute difference
(in the ambiguity function) of the Rihaczek distributions of
the signals.

max{ ®" (Y,-Y,)" (Y,-Y,) P}

Lastly, throughout this paper, we have assumed a single
representative signal for each class, but this constraint is not
necessary. One way of incorporating multiple examples of
each class in (2) is to average all the individual TFDs for

4. EXAMPLE

class one and class two resulting in a represent@jiand

Two 128-point discrete signals were used to develop aRz as is done in [8]. (This is tantamount to averaging<the

optimally discriminating kernel. Figure 1

shows matrices in (4).) More effective means of combining

diagrammatically the two signals used. The first is a reahultiple examples may be possible.

chirp running from a normalized frequency of 0.2 to 0.8
Nyquist. The other signal, again a real chirp, runs from 0.3
to 0.7.
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eigenvalues for this example. Because all Iinea[el]
combinations of eigenvectors corresponding to the sam
eigenvalue are themselves eigenvectors, we're free to
choose any weighting of these eight points for our kernel.
All satisfy our optimality criterion.

Figure 3 shows the TFDs of the two signals resulting2l
from the application of our kernel. Note that there is little of
the expected time and/or frequency structure. This is
because the kernel design criteria make no attempt to include
this. The kernel is geared strictly to achieving time-[3]
frequency separation. In this regard, we can see that it
succeeds; where the TFD for chirp 1 has large amounts of
energy, the TFD for chirp 2 has little resulting in minimal
overlap and maximal separation.

5. DISCUSSION [4]

Using the concepts of operator theory, we've been able
to forge a direct connection between a discrete, finite-length
input signal, and it's discrete-time, discrete-frequency TFDI]
With our approach, we represent each TFD as the 2-D
circular convolution of a kernel with the Rihaczek

distribution of the signal. 6
It is important to note that the kernel we obtain for

optimal separation maximizes the time-frequency difference
given the original distribution (the Rihaczek). If the two
signal classes have very dissimilar Rihaczek TFDs, then our
method will find very little room for improvement.
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