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Abstract|We extend the characteristic function method
(CFM) to more general groups, operators, and signal spaces.
We show that the extended CFM can be applied to projected
unitary operators as well as discrete-time/periodic signals.

1 INTRODUCTION AND OUTLINE

The characteristic function method (CFM) [1, 2] allows
the construction of joint a-b energy distributions1 Px(a; b)
satisfying marginal propertiesZ 1

�1

Px(a; b)da = jhx;vbij2;
Z 1

�1

Px(a; b)db = jhx;uaij2;
(1)

where vb(t) and ua(t) are (generalized [6]) eigenfunctions of
self-adjoint operators B and A, respectively. B and A can
be associated to A� = ej2��B and B� = ej2��A (�;� 2 IR)
which are unitary representations [7, 8] of the group (IR;+).
The eigenfunctions of B, A equal those of A�, B� , respec-
tively. A recent extension of the CFM allows �, � to belong
to more general LCA groups [9] (A; �), (B; �), respectively,
while making the following assumptions [10]{[13]:

1. A� and B� are unitary representations of the groups
(A;�) and (B; �), respectively, i.e., they are unitary operators
satisfying A�2A�1 = A�1��2 and B�2B�1 = B�1?�2 .

2. (A;�) and (B; �) are isomorphic to (IR;+), and thus

also to each other.2 This implies (i) a correspondence be-
tween any \extended" a-b distribution and a \conventional"
a-b distribution [12, 13] (i.e., the \extended" CFM is essen-
tially equivalent to the conventional CFM), and (ii) A� =

ej2��(�)B and B� = ej2� (�)A where B, A are self-adjoint
with eigenfunctions equal to those of A�, B� , respectively.

3. The signal space is3 L2(A;d�A) or L
2(B;d�B). Hence,

all signals x(t) are de�ned for t 2 (A; �) or t 2 (B; �).
4. The functions vb(t), ua(t) de�ning the marginals (cf.

(1)) are eigenfunctions of A� and B� , respectively.

This paper looks at the CMF from a new perspective and
shows that all of the above assumptions 1-4 are unneces-
sary. This entails a real, essential extension of the CFM
that admits much broader classes of operators, groups, and
signal spaces. In particular, we shall show that our extended

�Funding by FWF grant P10531- �OPH.
1These can be converted into joint time-frequency energy dis-

tributions Px(t; f) using a mapping (a; b) ! (t; f) [3]{[5].
2This assumption has independently been removed in [14].
3L2(A; d�A) is the space of square-integrable functions de�ned

on the set A, with inner product hx; yi =
R
A
x(t)y�(t)d�A(t)

where �A is the invariant measure for (A; �) [9].

CFM can be applied to \projected" unitary operators and to
discrete-time and periodic signals.

2 EXTENDED CFM FOR GROUP (IR;+)

For the sake of simplicity, we shall �rst consider operators
A� and B� indexed by �;� 2 (IR;+), i.e., assumption 2
is satis�ed a priori. (This assumption will be removed in
Section 3.) The following theorem shows how two operators
A�, B� and two function sets vb(t), ua(t) must be related
for the CMF (based on A�, B� , vb(t), ua(t)) to work.

Theorem 1. Let X be a signal (Hilbert) space with some
inner product h�; �iX . Let A� : X !X and B� : X !X be two
families of linear operators indexed by �;� 2 (IR;+). Let
M�;� : X !X be a linear operator satisfying4

M�;0 = A� ; M0;� = B� : (2)

Let �(�;�) be a complex-valued function satisfying

�(�; 0) = �(0; �) = 1 : (3)

Finally, let ua(t) and vb(t) be two families of functions in-
dexed by a; b 2 (IR;+). Then, the a-b representation

Px(a; b) =

Z 1

�1

Z 1

�1

�(�;�) hM�;� x;xiX e
�j2�(a�+b�)

d� d�

(4)
satis�es the marginal propertyZ 1

�1

Px(a; b)da = jhx;vbiX j2; 8 b 2 IR (5)

if and only if A� is related to vb(t) as
5

A� =

Z 1

�1

(vb
vb) ej2��b db : (6)

Similarly, Px(a; b) satis�es the marginal propertyZ 1

�1

Px(a; b) db = jhx;uaiX j2; 8 a 2 IR (7)

if and only if B� is related to ua(t) as

B� =

Z 1

�1

(ua
ua) ej2��a da : (8)

Proof. We shall prove (5); the proof of (7) is analogous.
With (4), we have (here, all integrals are from �1 to 1)

4Simple examples ofM�;� are B�A� and A�B�.
5Here vb
vb is the linear operator de�ned by

�
(vb
vb)x

�
(t) =

hx; vbiX vb(t).



Z
a

Px(a; b) da =

=

Z
�

Z
�

�(�;�) hM�;� x; xiX
�Z

a

e
�j2�a�

da

�
e
�j2�b�

d� d�

=

Z
�

�(�; 0) hM�;0 x; xiX e
�j2�b�

d�

=

Z
�

hA� x; xiX e
�j2�b�

d� =

��Z
�

A� e
�j2�b�

d�

�
x; x

�
X

= h(vb
vb) x;xiX = jhx; vbiX j2 ;

so that (5) is proved. Note that we have used (3), (2), andR
�
A� e

�j2�b� d� = vb
vb (by inversion of (6)). From the

above, it is evident that (6) is also necessary for (5). 2

While none of assumptions 1,3, and 4 have been used in
Theorem 1 or its proof, the central condition in (6) or (8)
might be suspected to imply all or some of these assumptions.
We now dispel this notion by means of a counterexample.

Projected unitary operators. Let A0� : X 0! X 0 and
B0� : X 0 ! X 0 with �;� 2 (IR;+) be unitary representations

of (IR;+) on a Hilbert space X 0. Let v0b(t), u
0
a(t) be the

eigenfunctions of A0�, B
0
� , respectively. We make the usual

assumption [10, 15] that v0b(t) and u0a(t) are complete and
orthogonal function sets inducing spectral decompositions

A
0
� =

Z 1

�1

(v0b
v0b) ej2��bdb; B
0
� =

Z 1

�1

(u0a
u0a) ej2��ada:
(9)

Now, let X � X 0 be some proper subspace of X 0, with
orthogonal projection operator PX , and de�ne the \pro-
jected operators" A� = PXA

0
�PX and B� = PXB

0
�PX and

the projected eigenfunctions vb(t) =
�
PX v

0
b

�
(t) and ua(t) =�

PXu
0
a

�
(t). With (9), we obtain

A� =

Z 1

�1

�
PX (v

0
b
v0b)PX

�
e
j2��b

db =

Z 1

�1

(vb
vb) ej2��bdb;
(10)

where we have used the identity PX (v
0
b
v0b)PX = (PXv

0
b)


(PXv
0
b) = vb
vb. Similarly we can show that

B� =

Z 1

�1

(ua
ua) ej2��a da : (11)

While the operators A� and B� are de�ned on all of X 0,
they map X into X ; hence we may (and will, henceforth) re-
de�ne them as A� : X !X and B� : X !X . Since (10) and
(11) are still valid, the conditions (6) and (8) of Theorem 1
are satis�ed. Thus, any a-b representation constructed as in
(4) will satisfy the marginal properties (5), (7). We empha-
size that vb(t), ua(t) are not the eigenfunctions, and conse-
quently (10) and (11) are not the spectral decompositions, of
A�, B� , respectively (the projected eigenfunctions of an op-
erator are not the eigenfunctions of the projected operator!).
The function sets vb(t) and ua(t) are complete6 in X , i.e.,R1
�1

(vb
vb)db =
R1
�1

(ua
ua) da = IX (the identity operator

on X ) but they are not orthogonal, i.e., hvb; vb0iX 6= �(b� b0)
and hua; ua0iX 6= �(a � a0). Furthermore, A� and B� are
not unitary. They satisfy A0 = B0 = IX but not the

6This implies
R1
�1

jhx; vbiX j
2 db =

R1
�1

jhx;uaiX j
2 da = kxk2X

for all x(t) 2 X . Hence, jhx; vbiX j
2 and jhx;uaiX j

2 are valid 1-D
energy distributions with respect to b and a, respectively.

usual composition properties, i.e., A�2A�1 6= A�1+�2 and
B�2B�1 6= B�1+�2 . They cannot be written as exponenti-
ated self-adjoint operators B and A. Finally, X is gener-
ally di�erent from L2(A;d�A) = L2(B;d�B) = L2(IR; dt).
Hence, assumptions 1,3, and 4 are indeed violated.

3 EXTENDED CFM FOR GENERAL GROUPS

We now consider the general case � 2 (A;�) and � 2
(B; �), where (A; �) and (B;�) are arbitrary LCA groups
that are not assumed to be isomorphic to each other or to
(IR;+), i.e., assumption 2 is not made.

Let �A�;b and �
B
�;a denote the group characters of (A;�) and

(B; �), respectively [9]. Here b 2 ( ~A; ~�) and a 2 ( ~B; ~�) where
( ~A; ~�) and ( ~B; ~�) are the dual groups of (A; �) and (B;�),
respectively [9]. Our central result is formulated as follows.

Theorem 2. Let X be a signal (Hilbert) space with some
inner product h�; �iX . Let A� : X !X and B� : X !X be two
families of linear operators indexed by � 2 (A; �), � 2 (B; �).
Let M�;� : X !X be a linear operator satisfying

M�;�0 = A� ; M�0;� = B� ; (12)

with �0, �0 the identity elements of (A; �), (B; �), respec-
tively. Let �(�;�) be a complex-valued function satisfying

�(�;�0) = �(�0; �) = 1 : (13)

Finally, let ua(t) and vb(t) be two families of functions in-

dexed by a 2 ( ~B; ~�), b 2 ( ~A; ~�). Then, the a-b representation7

Px(a; b) =

Z
A

Z
B

�(�;�) hM�;� x; xiX �
B�
�;a�

A�
�;b d�B(�)d�A(�)

(14)
(with a 2 ( ~B; ~�), b 2 ( ~A; ~�)) satis�es the marginal propertyZ

~B

Px(a; b) d�~B(a) = jhx;vbiX j2; 8 b 2 ( ~A; ~�) (15)

if and only if A� is related to vb(t) as

A� =

Z
~A

(vb
vb)�A�;b d�~A(b) : (16)

Similarly, Px(a; b) satis�es the marginal propertyZ
~A

Px(a; b) d�~A(b) = jhx; uaiX j2; 8 a 2 ( ~B; ~�) (17)

if and only if B� is related to ua(t) as

B� =

Z
~B

(ua
ua)�B�;a d�~B(a) : (18)

Proof. With (14), the left-hand side of (15) isZ
~B

Px(a; b)d�~B(a) =

Z
A

Z
B

�(�;�) hM�;� x; xiX

�
�Z

~B

�
B�
�;a d�~B(a)

�
�
A�
�;b d�B(�)d�A(�) :

It follows from the theory of the group Fourier transform8

that
R
~B
�B��;a d�~B(a)

4
= �B(�) satis�es

R
B
s(�)�B(�)d�B(�) =

7�A(�), �B(�), �~A(b), and �~B(a) denote the invariant measures

for (A; �), (B;�), ( ~A;~�), and ( ~B; ~�), respectively [9].
8The group Fourier transform for the group (B;�) is ~s(a) =R

B
s(�)�B�

�;a
d�B(�) with inversion s(�) =

R
~B
~s(a)�B

�;a
d�~B(a),

where s(�) 2 L2(B;d�B) and ~s(a) 2 L2( ~B; d�~B) [9].



s(�0); hence we obtain furtherZ
~B

Px(a; b) d�~B(a) =

Z
A

�(�;�0) hM�;�0 x;xiX �
A�
�;b d�A(�)

=

Z
A

hA� x; xiX �
A�
�;b d�A(�) =

��Z
A

A� �
A�
�;b d�A(�)

�
x; x

�
X

= h(vb
vb)x;xiX = jhx; vbiX j2 ;
so that (15) is proved. Here we have used (13), (12), andR
A
A� �

A�
�;b d�A(�) = vb
vb (by inversion of (16), cf. Footnote

8). From the above, it is evident that (16) is also necessary
for (15). The proof of (17) is analogous. 2

We emphasize that none of the assumptions 1-4 have been
used in Theorem 2 or its proof. The following example shows
that these assumptions may in fact be violated.

Projected unitary operators. Let A0� : X 0! X 0 and
B0� : X 0! X 0 be unitary representations of (A; �) and (B; �),
respectively. Let v0b(t), u

0
a(t) be the eigenfunctions of A0�,

B0� , respectively, assumed to be complete and orthogonal
function sets inducing spectral decompositions

A
0
� =

Z
~A

(v0b
v0b) �A�;b d�~A(b); B
0
� =

Z
~B

(u0a
u0a)�B�;a d�~B(a);

(19)
where the eigenvalues �A�;b, �

B
�;a are the characters of (A; �),

(B;�), respectively. Let X � X 0 and de�ne A�=PXA
0
�PX ,

B� = PXB
0
�PX and vb(t) =

�
PXv

0
b

�
(t), ua(t) =

�
PXu

0
a

�
(t).

With (19) we obtain (cf. the derivation in Section 2)

A� =

Z
~A

(vb
vb) �A�;b d�~A(b); B� =

Z
~B

(ua
ua)�B�;a d�~B(a):

(20)
Since A� and B� map X into X , we will rede�ne them as
A� : X ! X and B� : X ! X . With (20) the conditions
(16), (18) are satis�ed, and thus any a-b representation con-
structed as in (14) satis�es the marginal properties (15), (17).
Again vb(t), ua(t) are not the eigenfunctions, and the ex-
pressions (20) are not the spectral decompositions, of A�,
B� , respectively. The function sets vb(t), ua(t) are complete

in X (i.e., jhx;vbiX j2 and jhx; uaiX j2 are valid 1-D energy
distributions) but not orthogonal. A�, B� are not unitary
and cannot be written as exponentiated self-adjoint opera-
tors. There is A�0 =B�0 = IX but A�2A�1 6=A�1��2 and

B�2B�1 6=B�1?�2 . X is generally di�erent from L2(A;d�A)
and L2(B;d�B). Hence, assumptions 1-4 are violated.

4 EXAMPLE: SCALING AND TIME SHIFT
OPERATORS ON L2([0; T ]; dt)

In the following example, assumptions 1, 3, and 4 are vio-
lated. Consider the scaling and time-shift operators

A
0
� : X 01!X 01; (A�x)(t) =

1p
�
x

�
t

�

�
; � 2 (IR+; �)

B
0
� : X 02!X 02; (B

0
�x)(t) = x(t��) ; � 2 (IR;+);

where X 01 = L2(IR+; dt) and X 02 = L2(IR; dt). A0� and
B0� are unitary representations of the LCA groups (A; �) =
(IR+; �) (the group of positive � with multiplication as

group operation and invariant measure d�A(�) = d�
�
) and

(B;�) = (IR;+), respectively. A0� and B0� allow (spec-
tral) decompositions (19) with eigenvalues (= group charac-

ters) �A�;b = ej2�b ln� and �B�;a = e�j2��a and eigenfunctions

v0b(t) =
1p
t
e�j2�b ln(t=t0) for t > 0 (t0 > 0 is an arbitrary ref-

erence time) and u0a(t) = ej2�at, where b 2 ( ~A; ~�) = (IR;+)

and a 2 ( ~B; ~�) = (IR;+).

Assume now that we wish to operate on X = L2([0; T ]; dt),
the space of square-integrable signals x(t) de�ned for t 2
[0; T ], with inner product hx; yiX =

R T
0
x(t) y�(t) dt. Extend-

ing signals as x(t) = 0 outside the respective time interval,
we have X � X 01 � X 02. Unfortunately, A0� and B0� can-

not be de�ned9 on X since they may map signals x(t) 2 X
onto signals outside X . Hence we use A� = PXA

0
�PX

and B� = PXB
0
�PX which can be considered to be de-

�ned on X , i.e., A� : X ! X and B� : X ! X . Here,
(PXx)(t) = x(t) I(t) where I(t) is 1 for t 2 [0; T ] and 0 oth-
erwise. A� and B� allow the decompositions (not spectral

decompositions) (20) with �A�;b = ej2�b ln�, �B�;a = e�j2��a

as before and vb(t) = (PX v
0
b)(t) = 1p

t
e�j2�b ln(t=t0) I(t),

ua(t) = (PXu
0
a)(t) = ej2�at I(t). Hence, conditions (16),

(18) are satis�ed and joint energy distributions can be con-
structed according to (14), which yields

Px(a; b) =

Z 1

0

Z 1

�1

�(�;�) hM�;� x; xiX e
j2�(a��b ln�)

d�
d�

�

for a; b 2 IR, where �(�;�) must satisfy �(�;0) = �(1; �) =
1. Setting, for example, M�;� = B�A� yields hM�;� x; xiX
= 1p

�

R T+�
0

x
�
t��
�

�
x�(t)dt for x(t) 2 X . Px(a; b) satis�es

the marginal properties (15), (17), which readZ 1

�1

Px(a; b) da = jMx(b)j2 ;
Z 1

�1

Px(a; b) db = jX(a)j2;

with the Mellin-type transform Mx(b) = hx; vbiX =R T
0
x(t) ej2�b ln(t=t0) dtp

t
and the Fourier transform X(a) =

hx; uaiX =
R T
0
x(t) e�j2�at dt.

5 EXTENDED CFM FOR DISCRETE-TIME
AND/OR PERIODIC SIGNALS

The removal of assumption 2 in Section 3 allows the ex-
tended CFM to be applied to discrete-time and/or periodic
signals. (This application has independently been considered
in [14].) We shall discuss simple speci�c examples based on
suitably de�ned time and frequency shift operators.

Discrete-time signals. Let X = l2(ZZ), the space of
square-summable discrete-time signals x(n) (n 2 ZZ) with
inner product hx;yiX =

P1

n=�1
x(n) y�(n), and consider

the time shift and frequency shift operators

A� : X!X ; (A�x) (n) = x(n� �); � 2 (ZZ;+)

B� : X!X ; (B�x) (n) = e
j2��n

x(n); � 2 (IRmod1
;+1):

A� and B� are unitary representations of the LCA groups
(A; �) = (ZZ;+) and (B; �) = (IRmod1;+1) (i.e., the in-
terval [0; 1) with group operation + mod 1), respectively.
These groups are not isomorphic to (IR;+), i.e., assump-
tion 2 is violated. They are dual, i.e., the dual group of
(ZZ;+) is (IRmod1;+1) and vice versa. A� and B� allow

the (spectral) decompositions A� =
R
1

0
(vb
vb) �

A
�;b db and

9A similar problem occurs in [16], where the time shift oper-

ator is considered on L2(IR+; dt). Our approach using projected
operators explains why the results in [16] are nevertheless valid.



B� =
P1

a=�1(ua
ua)�B�;a, with eigenvalues (= group char-

acters) �A�;b = e�j2��b, �B�;a = ej2��a and eigenfunctions

vb(n) = ej2�bn, ua(n) = �[n � a] (�[n � a] is 1 for n = a

and 0 for n 6= a), where b 2 ( ~A; ~�) = (IRmod1;+1) and

a 2 ( ~B; ~�) = (ZZ;+). Thus the conditions (16), (18) are
satis�ed and joint energy distributions can be constructed
according to (14), which yields

Px(a; b) =

1X
�=�1

Z
1

0

�(�;�) hM�;� x;xiX e
�j2�(a��b�)

d� ;

where �(�;�) has to satisfy �(�;0) = �(0; �) = 1. Setting
M�;� = B�A�, we obtain hM�;� x; xiX =

P1

n=�1
x(n �

�)x�(n) ej2��n and, after simple manipulations,

Px(a; b) =

1X
k=�1

1X
l=�1

x(k)x�(l) ~�(k�a; l�a) e�j2�(k�l)b

with a 2 ZZ and b 2 [0;1), where ~�(k; l) =
R
1

0
�(l �

k; �) ej2�l� d�. This is precisely the \type II Cohen's class"
of [17]. Px(a; b) satis�es the marginal properties (15), (17);

with hx; vbiX =
P1

n=�1
x(n) e�j2�bn

4
= X(b) and hx; uaiX =P1

n=�1
x(n) �[n�a] = x(a), these marginal properties read

1X
a=�1

Px(a; b) = jX(b)j2;
Z

1

0

Px(a; b)db = jx(a)j2:

Periodic signals. The dual case (x(t) periodic in time
and discrete in frequency) can be treated similarly and leads
to the \type III Cohen's class" of [17].

Discrete and periodic signals. Finally let X =
l2(ZZN), the space of discrete-time signals x(n) (n 2
ZZN = f0; 1; � � �N � 1g) which are discrete and �nite-
support/periodic in both time and frequency domain, with

inner product hx;yiX = 1p
N

PN�1

n=0
x(n) y�(n). We use the

discrete, cyclic time and frequency shift operators [18]

A� : X!X ; (A�x) (n) = x((n��)N ) ; � 2 (ZZN ;+N)

B� : X!X ; (B�x) (n) = e
j2�

�n

N x(n); � 2 (ZZN ;+N);

where (n)N = nmodN . A� and B� are unitary represen-
tations of the LCA group (A; �) = (B; �) = (ZZN ;+N), i.e.,
the set ZZN = f0; 1; � � �N�1g with group operation + mod

N ; note that
R
A
s(�)d�A(�) = 1p

N

PN�1

�=0
s(�) [18]. The

dual group of (ZZN ;+N) is (ZZN ;+N). A� and B� allow

the (spectral) decompositions A� = 1p
N

PN�1

b=0
(vb
vb)�A�;b

and B� = 1p
N

PN�1

a=0
(ua
 ua)�

B
�;a , with eigenvalues (=

group characters) �A�;b = e�j2�
�b
N , �B�;a = ej2�

�a

N and eigen-

functions vb(n) = ej2�
bn
N , ua(n) =

p
N �[(n � a)N ], where

b 2 ( ~A; ~�) = (ZZN ;+N ) and a 2 ( ~B; ~�) = (ZZN ;+N ). Thus
the conditions (16), (18) are satis�ed, and joint energy dis-
tributions can be constructed according to (14), which yields

Px(a; b) =
1

N

N�1X
�=0

N�1X
�=0

�(�;�) hM�;� x; xiX e
�j2� a��b�

N ;

where �(�;�) must satisfy �(�;0) = �(0; �) = 1. Setting

M�;� = B�A�, we obtain hM�;� x; xiX = 1p
N

PN�1

n=0
x((n�

�)N)x
�(n) ej2�

�n

N and �nally

Px(a; b) =
1

N

N�1X
k=0

N�1X
l=0

x(k)x
�
(l) ~�((k�a)N; (l�a)N) e�j2�

(k�l)b
N

with a; b2ZZN , where ~�(k; l)= 1p
N

PN�1

�=0
�((l�k)N ; �) ej2�

l�

N .

This is the \type IV Cohen's class" of [17]; it con-
tains the \discrete Wigner distribution" de�ned in [18].
Px(a; b) satis�es the marginal properties (15) and (17); with

hx; vbiX = 1p
N

PN�1

n=0
x(n) e�j2�

bn
N

4
= XN (b) and hx; uaiX =

1p
N

PN�1

n=0
x(n)

p
N �[(n�a)N ] = x(a), (15) and (17) read

1p
N

N�1X
a=0

Px(a; b) = jXN (b)j2; 1p
N

N�1X
b=0

Px(a; b) = jx(a)j2:
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