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ABSTRACT

The concept of rotations in continuous-time, continuous-

frequency is extended to discrete-time, discrete-frequency

as it applies to the Wigner distribution. As in the continu-

ous domain, discrete rotations are de�ned to be elements of

the special orthogonal group over the appropriate (discrete)

�eld. Use of this de�nition ensures that discrete rotations

will share many of the same mathematical properties as

continuous ones. A formula is given for the number of pos-

sible rotations of a prime-length signal, and an example is

provided to illustrate what such rotations look like. In ad-

dition, by studying a 90 degree rotation, we formulate an

algorithm to compute a prime-length discrete Fourier trans-

form (DFT) based on convolutions and multiplications of

discrete, periodic chirps. This algorithm provides a further

connection between the DFT and the discrete Wigner dis-

tribution based on group theory.

1. INTRODUCTION

The Wigner distribution satis�es many desirable prop-
erties, among them being the property of maximal co-
variance [1, 2]. This property results from the relation-
ship between the Wigner distribution and the Weyl cor-
respondence, as the Weyl correspondence is the unique
correspondence that is well-behaved under symplec-
tic transformations in the following sense: applying a
change of coordinates to a Wigner distribution of a sig-
nal is identical to computing the Wigner distribution
of that signal after an appropriate combination of di-
lations, shearings, and rotations has been applied to
it, [3, 4]. These concepts are completely straightfor-
ward for the continuous Wigner distribution, and have
been detailed elsewhere, [5]. In particular, the concept
of applying a rotation to a continuous time-frequency
distribution is easily understood. To rotate a distribu-
tion by an angle �, simply apply the matrixR(�), given
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by

R(�) =

�
cos � sin �
� sin � cos �

�
; (1)

to the coordinates of the Wigner distribution. In the
time domain, this is equivalent to applying the appro-
priate fractional Fourier transform, [6]. The case of
� = �

�
2
is particularly signi�cant, as this corresponds

in the time domain to a Fourier transform. In [7], Po-
letti gave a time-frequency interpretation of how this
rotation could be decomposed into a series of chirps,
which had been described previously in the context of
the ambiguity function, [8].

For the case of discrete-time, discrete-frequency time-
frequency distributions, rotations are more di�cult to
understand because the time-frequency plane is peri-
odic and has �nitely many points. Until recently, there
was not a formulation of the Wigner distribution in the
signal processing literature that could be related to the
discrete Weyl correspondence. In [9, 10], a discrete-
time, discrete-frequency Wigner distribution was de-
rived that does satisfy the Weyl correspondence for
this discrete domain. Since it is clear that the discrete-
time, discrete-frequency domain is di�erent from the
continuous-time, continuous-frequency domain, [11, 12],
it is not surprising that the interpretation of rotations
is di�erent as well. In this paper, the concept of ro-
tations will be generalized to discrete-time, discrete-
frequency using an algebraic construction. We will
also describe how a 90 degree rotation in discrete-time,
discrete-frequency can be decomposed into a sequence
of discrete, periodic chirps.

2. DISCRETE ROTATIONS

In [10], the discrete-time, discrete-frequency Wigner
distribution was shown to satisfy the property of co-
variance, made possible by its relationship with the
Weyl correspondence. Speci�cally, the application of
a symplectic transformation, A, to a Wigner distri-
bution, Wx;y, is equivalent to �rst applying a unitary



transformation dependent on A;U(A); to both x and
y, and then computing their Wigner distribution, i.e.

Wx;y(A(t; f)) =WU(A)x;U(A)y(t; f): (2)

In other words, if a linear transformation with unit
norm is applied to a Wigner distribution in the time-
frequency plane, there is a corresponding transforma-
tion of the signals that yields the same Wigner distri-
bution.

While there are three fundamental types of sym-
plectic transformations (dilation/compression, shear-
ing, and rotations), the focus here is on rotations. The
only rotation explored in [10] was the symplectic trans-
formation A corresponding to rotation counterclock-
wise by 90 degrees, given by

A =

�
0 1
�1 0

�
; (3)

and the corresponding unitary transformation U(A)
for a length-N signal x(n) such that (2) is satis�ed is
given by

U(A )x(n) = j
1
2

N�1X
k=0

e
j2�nk
N X(k); (4)

where X(k) is the discrete Fourier transform (DFT) of
x(n). U(A ) is proportional to the inverse DFT. Fig-
ure 1a contains an image plot of the discrete Wigner
distribution of the signal x1(n) given in MATLAB

by x1(n) = ones(17; 1). Figure 1b contains an image
plot of the discrete Wigner distribution of the signal
U(A )x1(n). Alternatively, �gure 1b contains the re-
sult of applying A to the Wigner distribution given
in �gure 1a. As shown in �gure 1b, application of the
symplectic transformation A does result in a rotation
by 90 degrees.

Consider now other rotations in discrete-time, discrete-
frequency. To simplify matters, we limit our discussion
to signals whose lengths are prime. In the continu-
ous time-frequency plane, a rotation by � is given by
the matrix in (1). The set of such rotation matrices
in two dimensions comprise an algebraic group called
the special orthogonal group of dimension 2 over the
real numbers, or SO(2;R). (This group is discussed in
numerous books; see, for example, [13]). The elements
R(�) of SO(2;R) satisfy the following properties, [6]:

1. Zero rotation: R(0) = I

2. Consistency with Fourier transform: R(��
2
) = F

3. Additivity of rotations: R(�)R(�) = R(�+ �)

In discrete-time, discrete-frequency for a length-p
signal (p prime), let a rotation matrix be any element
in the analogous group of matrices, the special orthog-
onal group of dimension 2 over the integers modulo p,
SO(2;Z=p). Then, every element Rp of SO(2;Z=p)
has the form, [14],

Rp(a; b) =

�
a b

�b a

�
; (5)

where a; b are elements of the integers mod p, Z=p, and
the determinant of Rp(a; b) is equal to 1, i.e.

a
2 + b

2 = 1 mod p. (6)

Note that such matrices have a similar form to that
given in (1). Furthermore, since the identity matrix
and A�1 are both elements of SO(2;Z=p), this de�ni-
tion satis�es the �rst two properties cited from [6]. The
third property is satis�ed by the fact that SO(2;Z=p)
has a generator, [14], and so every element can be ex-
pressed as a power of the generator (multiplication of
elements is accomplished by the addition of exponents).

Another consequence is that there are only �nitely
many rotations possible for any given p. To obtain the
exact number for p > 2 (p = 2 is a trivial case), �rst
express p as p = 4l � 1. Then, the number of possible
rotations, i.e. number of elements of SO(2;Z=p); is
given by, [14],

Number of rotations =

(
p� 1 if p = 4l + 1;

p+ 1 if p = 4l � 1: (7)

An example illustrates how this works in practice.
For the signal x1(n) = ones(17; 1), the group SO(2;Z=p)
has 16 elements. A generator of the group SO(2;Z=17),
Rg17, is given by

Rg17 =

�
5 �8
8 5

�
: (8)

It can be veri�ed that Rg
4
17 = R17(

�
2
) and Rg

16
17 =

R(0) = I. The rotation of x1 by Rg
4
17 (90 degrees) is

shown in �gure 1b. The rotation by Rg
2
17 (45 degrees)

is shown in �gure 1c, and the rotation by Rg17 is shown
in �gure 1d. The interpretation of �gure 1d is di�cult,
as the elements around the origin (the origin is �xed by
Rg17) have been permuted in a manner which does not
lend itself to simple explanation. While these rotations
are being depicted in the time-frequency plane, they
can be computed directly in the time domain, by ex-
pressing a rotation matrix as a product of shearing and
90 degree rotation matrices, and then applying the cor-
responding sequence of time domain transformations,



i.e. the product�
1 0
� 1

�
A
�1


�
1 0
�b 1

�
A

�
1 0
� 1

�
=

�
a b

�b a

�
(9)

has the corresponding time domain operator

e

j2�(2�1�n2)p
p Fe

j2�(2�1(�b)n2 )p
p F

�1
e

j2�(2�1�n2)p
p ;

(10)

where � = (a � 1)b�1;F refers to the DFT, and (�)p
refers to arithmetic modulo p.

It is possible, albeit more complicated, to general-
ize the results here to non-prime lengths. Such com-
plications arise from the fact that Z=n is harder to
characterize when n is not prime. Based on the dis-
cussion presented here, there is some justi�cation to
consider (10) as a de�nition for the discrete fractional
Fourier transform. This di�ers from de�nitions given
in [15, 16]. Due to the di�culties in interpreting some
of the rotations (e.g. �gure 1d) obtained from (10), it
would be premature to make any further claims about
its relationship to the discrete fractional Fourier trans-
form. This analysis, though, might provide insight into
why it is di�cult to make a suitable de�nition of this
transform.

3. COMPUTING THE DFT VIA PERIODIC

CHIRPS

It is well-known that the DFT can be computed via
a sequence of chirps, as given in [17]. We now de-
rive a similar formula using discrete, periodic chirps
(like those in (10)). This result provides an interesting
viewpoint of the relationship between the discrete-time,
discrete-frequency Wigner distribution and the DFT.
It also may have some potential use with regards to
applications of linear swept frequency measurements
for periodic systems, in a manner analogous to what
was given in [7]. The following discussion will assume
that the signal of interest is of length-p, a prime, al-
though, as before, the results may be generalized to
other lengths.

The rotation matrix given by Rp(�
�
2
), as stated

previously, corresponds to the DFT. This matrix can
be written as a product of three shearing matrices:

Rp(�
�

2
) =

�
0 �1
1 0

�
=

�
1 �1
0 1

� �
1 0
1 1

��
1 �1
0 1

�
:

(11)

This corresponds to the following equation in the time
domain for the length-p signal, x(n):

X(m) = [x(n)~ e

j2�(2�1n2)p

p ]e
�j2�(2�1n2)p

p ~ e

j2�(2�1n2)p

p ;

(12)

where ~ denotes circular convolution.
Equation (12) gives an algorithm for a prime-length

DFT that uses these unusual periodic chirps. Figures 2
and 3 illustrate just how these chirps di�er from sam-
ples of continuous chirps. Figure 2 contains a plot of
the real and imaginary parts of the standard chirp sig-

nal x2(n) = e
�j�n2

17 ; n = �8; : : : ; 8: Figure 3 contains
a plot of the real and imaginary parts of the periodic

chirp signal x3(n) = e
�j2�(2�1n2)17

17 on the same interval.
With such chirps, the linear swept frequency measure-
ment and the chirp transform can be formulated for
discrete, periodic domains.

4. CONCLUSION

An extension of the concept of rotation to discrete-
time, discrete-frequency has been formulated using well-
known groups from algebra. The rotation operators ob-
tained satisfy several desired mathematical properties.
Unfortunately, it is not always straightforward to inter-
pret the e�ect of such operators in the time-frequency
plane. Since a satisfactory de�nition of the discrete
fractional Fourier transform remains an open question,
it may be important to consider details gleaned from
analysis of these discrete rotations, such as the fact
that there are only �nitely many of them for a given
signal length. It was also demonstrated how the study
of 90 degree rotations of the discrete Wigner distri-
bution leads to an alternative algorithm for a prime-
length DFT. While this does not directly lend itself to
any applications, further study of the discrete, periodic
chirps utilized in the algorithmmay prove useful in the
analysis of periodic systems.
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Figure 2: The standard chirp x2(n) = e
�j�n2
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Figure 3: The periodic chirp x3(n) = e
�j2�(2�1n2)17
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