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ABSTRACT

Frequency sampling �lters (FSF) are of interest to the de-
signers of multirate �lter banks due to their intrinsic low-
order, complexity, and linear phase behavior. Fast FSFs
residing in smaller packages will be required to support fu-
ture high-bandwidth, mobile image and signal processing
applications. Since FSF designs rely on the exact annihi-
lation of selected poles-zeros, a new facilitating technology
is required which is fast, compact, and numerically exact.
Exact FSF pole-zero annihilation is guaranteed by imple-
menting polynomial �lters over an integer ring in the residue
arithmetic system (RNS). The design methodology is evalu-
ated as an ASIC. Based on an FPGA technology, at least an
86% complexity reduction can be achieved with even greater
advantages gained as a custom VLSI. An RNS-based FSF
implementation of an eight channel cochlea �lter bank is
presented which demonstrates both the performance and
packaging advantages of the new FSF paradigm.

.

1. INTRODUCTION

A classical frequency sampling �lter (FSF) consists of a
comb �lter cascaded with a bank of frequency selective res-
onators [1, 2]. The resonators independently produce a col-
lection of poles which annihilate the zeros produced by the
comb pre-�lter. The gains applied to the output of the res-
onators are chosen so as to approximately pro�le the mag-
nitude frequency response of a desired �lter. For stability
reasons, the poles and zeros are generally designed to be
slightly interior to the unit circle. An FSF can also be cre-
ated by cascading all-pole �lter sections with all-zero �lter
(comb) sections as suggested in Figure 1. The delay of the
comb-section 1 � z�D are chosen that its zeros cancel the
poles of the all-pole pre�lter as shown in Figure 2. It can
be observed that wherever there is a complex pole there
also exists an annihilating complex zero which results in
an all-zero FIR input-output behavior, with the usual lin-
ear phase and constant group delay properties. FSF �lters
of this type are known to provide very e�cient multirate
interpolation and decimation solutions as well as serve as
high-decimation rate �lters for RF to baseband conversion
of radio signals [3].
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Figure 2: Example of pole/zero-compensation for a pole-
angle of 60� and Comb-delay D = 6. [4].

2. FREQUENCY SELECTIVE PROPERTIES

The poles of the FSF �lter developed in this paper will
reside on the periphery of the unit circle. This is in con-
trast with the customary practice of forcing the poles and
zeros to reside at interior locations to guard against pos-
sible inexact pole-zero cancellation. It will be shown the
stability is not an issue if the FSF is implemented using
the exact residue number system (RNS). The RNS [5] is
an exact arithmetic system which is also known to possess
a bandwidth/area ratio which greatly exceeds that obtain-
able using conventional �xed-point system (e.g., two's com-
plement) in FIR-like applications, especially when complex
arithmetic is performed. Arithmetic in the RNS is per-
formed in a modular sense within a set of relatively-prime,
independent, small wordlength channels. An example of an



Table 1: Filters with integer coe�cients producing unique angular pole locations up to order six.

Ck(z) Order a0 a1 a2 a3 a4 a5 a6  1  2  3

-C1(z) 1 1 -1 0�

C2(z) 1 1 1 180�

C6(z) 2 1 -1 1 60�

C4(z) 2 1 0 1 90�

C3(z) 2 1 1 1 120�

C12(z) 4 1 0 -1 0 1 30� 150�

C10(z) 4 1 -1 1 -1 1 36� 108�

C8(z) 4 1 0 0 0 1 45� 135�

C5(z) 4 1 1 1 1 1 72� 144�

C16(z) 6 1 0 0 -1 0 0 1 20:00� 100:00� 140:00�

C14(z) 6 1 -1 1 -1 1 -1 1 25:71� 77:14� 128:57�

C7(z) 6 1 1 1 1 1 1 1 51:42� 102:86� 154:29�

C9(z) 6 1 0 0 1 0 0 1 40:00� 80:00� 160:00�
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Figure 1: Cascading of frequency sampling �lter to save a factor of R delays for multirate signal processing [1, Sec. 3.4].

RNS systolic array of multiply-accumulate (MAC) cells is
shown in Figure 3. In addition, by allowing the FSF poles
and zeros to reside on the unit circle, a multiplier-less FSF
can be realized with an attendant reduction in complexity
an increase in data bandwidth.

In Figure 1, �rst-order �lter sections are used to pro-
duce poles the angles 0� and 180� (i.e., z = �1). Second-
order sections with integer coe�cients can produce poles
at angles 60�, 90�, 120� according to 2 cos(2�K=D)=1, 0,
and �1. For sections of higher order, there are no single
frequency selective �lters as shown in Table 1. Here the re-
sults of complete search are reported for all polynomials up
to order six, with integer coe�cients and roots on the unit
circle which deliver additional (new) angular frequencies.
From this list of �lters, up to order twenty-four, with inte-
ger coe�cients and poles residing on the periphery of the
unit circle, an e�cient and compact FSF can be designed
and implemented.

3. CYCLOTOMIC POLYNOMIALS

The integer polynomials from Table 1 found by computer
search are known from number theory as cyclotomic poly-
nomials which are de�ned by [6, p.158-160]:

Ck(z) =
Y

gcd(r;k)=1

0<r<k

z �W
r

k (1)

where gcd(r; k) is the greatest common divisor of r and k.
A useful property of Ck(z) is that the order of the poly-
nomial is equal to the Euler totient function �(k), which
is the number of relative primes not exceeding k. Because
�(k) is an increasing function with a lower bound of �(k) �
0:215481 � k1:0077 +1:36, forall k > 5, only cyclotomic poly-
nomials up to k = 18 are to be evaluated for polynomials
of order six and k = 30 for polynomials of order eight, see
Figure 4. The Ck(z) were used to verify the results shown
in Table 1. It's interesting to notice [7, p.74] that the coef-
�cients of Ck(z), up to k = 105, are one of 0,1, or �1 and



Figure 3: RNS systolic array chip. [4].

only polynomials with order higher than twenty-four have
coe�cients greater than 1. FSF in the RNS are therefore
multiplier free up to order twenty-four.

4. DESIGN EXAMPLE

An RNS �lter bank, developed for use as a cochlea implant,
was designed using a Stanford-Implant eight �lter model
having logarithmic coverage of the frequency range from
900-8000 Hz [8, 9]. Using the developed design procedure,
and a maximal pole positional error criterion of 5.7% (see
Table 2) from the Stanford-Implant ideal, a sixth order solu-

Table 2: Error for di�erent maximal order of the pole sec-
tion.

mean error Maximum error
First angle
up to order six

3.6% 5.7%

All angle
up to order six

2.8% 4.7%

All angle
up to order eight

2.4% 3.7%

tion was found at a sampling frequency of 16624 Hz. An in-
teger coe�cient half-band �lter HB6 [10] anti-aliasing �lter
and third order multiplier-free CIC-�lter (a.k.a. Hogenauer
�lter [11]), was added to the design to suppress unwanted
frequency components as shown in Figure 5. The band-
width of each resonator can be independently tuned by the
number of stages and the delays in the comb-section. The
number of stages and delay was optimized to meet the lis-
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Figure 4: Order of Ck(z), which is �(k). Computation of
lower bound by starting with a high k value (1000) and com-
puting �(k) down to k = 1. Lower bound approximation
for k > 5 is �(k) � 0:215481 � k1:0077 + 1:36.

tener bandwidth requirements [12]. All frequency selective
�lters have two stages and delays.

Table 3: Bit width of the single �lter.
Filter Stage 1 Stage 2 Stage 3 Stage 4

F20 20 17 15 14
F25 20 18 15 14
F36 20 17 15 14
F51 19 16 15 14
F72 20 16 15 14
F90 20 17 15 14
F120 20 17 15 14
F180 19 16 15 14
III 19 18 17
D4,D5 16 16 15
HB6 22

The design was prototyped using Xilinx XC4000 FP-
GAs with the complexity reported in Table 3 and Table 4.
Using high-level design tools, the number of used CLBs is
typically 20% more than the theoretical prediction obtained
by counting adder, ip-ops, ROMs and RAMs. A custom
CMOS RNS design, based on the cells used in the device
shown in Figure 3, is being pursued for comparative pur-
poses.

5. CONCLUSION

A methodology for e�ciently implementing FSF �lters hav-
ing poles (up to order twenty-four) and zeros on the unit cir-
cle is presented. The implementation was based on the use
of the exact RNS arithmetic system which insured pole-zero
annihilation was complete. The RNS-based FSF processor
was studied in the context of an FPGA design, consisting of
1572 CLBs of a Xilinx XC4000 and a custom CMOS device.
A custom VLSI device is also being developed to further re-
duce the complexity of an FSF system. The resulting sys-
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Figure 5: Design of an arti�cial cochlea consisting of a half-band and CIC pre�lter and FSF comb-resonator sections.

Table 4: Number of used CLBs of Xilinx XC4000 FPGAs
(Notation: F20D90 means �lter pole-angle 20:00� delay
Comb D = 90). Total Practice: 1572 CLBs. Total non-
recursive FIR: 11292 CLBs.

F20D90 F25D70 F36D60 F51D49
Theory 122 184 128 164
Practice 160 271 190 240
Nonrec. 2256 1836 1924 1140

F72D40 F90D40 F120D33 F180D14
Theory 124 65 86 35
Practice 190 93 120 53
Nonrec. 1039 1287 1260 550

HB6 III D4 D5
Theory 122 31 24 24
Practice 153 36 33 33

tem, compared to conventional implementations, are shown
to possess a superior bandwidth/complexity (area) metric
which is important in applications having severe packaging
constraints (i.e., mobile applications).
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