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ABSTRACT

The design of constrained multirate systems using a

relative `2 error criterion is considered. A general al-

gorithm is proposed to solve the problem. One appli-

cation of the algorithm is the design of a new class of

multirate �lters for signal decomposition{projection �l-

ters. These multirate systems are projection operators

that optimally approximate linear time-invariant �lters

in the `2 norm. A second application of constrained

multirate �lter design is also presented{optimal design

of multistage multirate systems. Examples illustrate

the new design method and its advantages over design

methods intended for linear time-invariant systems.

1. INTRODUCTION

Constraints are often introduced in multirate design.

In implementation of multistage downsampling, struc-

tural constraints in the system reduce overall required

computation [1]. These multiple stages perform most

processing at lower rates in order to improve e�ciency.

In �lter bank design, orthogonality and biorthogonality

constraints are imposed on the �lters in order to achieve

perfect reconstruction. These constraints are useful for

a variety of applications including image compression,

audio compression, and alternating projections [2]. In

this paper, we consider the design of multirate sys-

tems with either structural constraints on the system

or equality/inequality constraints on the design param-

eters of the system.

The design of multirate systems can be considered

from a model-matching approach, see Figure 1. An

ideal desired multirate system, D, is to be approxi-

mated by a multirate system with FIR �lters, M(h),

depending on a vector parameter h. The model-match-

ing system generates an error signal w for a given x.

We let x vary over the class of bounded-energy inputs;

this choice of signal inputs arises as a natural extension

of the Chebyshev criterion for linear time-invariant �l-

ter design [3]. The maximum relative system error for
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Figure 1: Multirate model-matching problem.

this class of inputs is

sup
x6=0

kwk2
kxk2

= kM(h)�Dk2 (1)

where for arbitrary x, kxk2 =
qP1

n=�1 jx(n)j2. For

constrained multirate systems, we restrict the model

parameters h to a set S while minimizing the approxi-

mation error (1). The design problem is

ĥ = argmin
h2S

kM(h)�Dk2: (2)

The model-matching problem for multirate systems

can be stated as a matrix-function approximation prob-

lem [3, 4]. A general multirate system can be expressed

in a commutator form [3] as shown in Figure 2. In the

Figure 2: Commutator form of a multirate system.

�gure, G (the commutator-form matrix) is a L�1 ma-

trix with entries Gi(z), PyL is the adjoint (and inverse)

of the L-polyphase decomposition, and the large arrows

indicate vector outputs. The polyphase decomposition

is de�ned as

[PL(x)](n) =
�
x0(n) x1(n) : : : xL�1(n)

�t
(3)

where xi(n) = x(Ln + i). For an arbitrary G, de�ne

Gmod to be the L�M matrix with entry (i;m) equal



to Gi(f +
m
M
). Then the model-matching problem (2)

is (see [3])

ĥ = argmin
h2S

max
f2F

1p
M
kE(f;h)k2: (4)

Here E(f;h) = Gmod(f;h) �Gideal
mod (f), F is the com-

plement of the transition region in [0; 1
M
], Gideal(f) is

the commutator-form matrix of D, and G(f;h) is the

commutator-form matrix of M(h). Note that the ma-

trix norm in (4) is the matrix 2-norm [5]; also, note

that all matrices are indexed from 0 rather than 1.

2. PROBLEM SOLUTION

The problem (2) can be solved using nonsmooth opti-

mization methods [6]. De�ne

e(h) = kM(h)�Dk2; (5)

then the model-matching problem becomes

ĥ = argmin
h2S

e(h): (6)

Thus, the problem of model matching reduces to min-

imization of a nonsmooth function on S. The function
e(h) is a locally Lipschitz function [7]. For optimization

purposes, the generalized gradient, @e(h), is needed.

The function e(h) can be expressed as

e(h) = max
f2F

max
�2B�

1p
M

Re

�
hE(f;h);�i

�
(7)

where \Re" indicates the real part, the inner product

is given by hA;Bi =Pi;k ai;kb
�
i;k, and B� is the set of

L�M matrices

B� =

�
�j

min(L;M)�1X
i=0

�i(�) = 1

�
: (8)

Here, �i(�) is the ith singular value of the matrix �

[5]. De�ne

S(h) =
�
(�; f)j� 2 B�; f 2 F ;

1p
M

Re(hE(f;h);�i) = e(h)

�
: (9)

Using the chain rule [7], we obtain

@e(h) = co

�
sjsi =

1p
M

Re

�
h @E
@hi

(h; f);�i
�
;

(�; f) 2 S(h)
�
: (10)

For clarity, we mention that @E
@hi

(h; f) denotes the eval-

uation of the partial derivative at (h; f).

In order to add the constraint set to the optimiza-

tion problem, we use an `1 penalty function. For in-

stance, for an equality constraint, f(h) = 0, we add the

penalty function, cjf(h)j to e(h). Then a minimum of

the new objective function e(h) + cjf(h)j would be a

solution. A typical value for the penalty parameter is

10. A subgradient of the new objective function for

use in optimization can be found by adding members

of the subgradients of objective function and penalty

function.

We have implemented in Matlab a nonsmooth op-

timization method using subgradient locality measures

and an implicit trust region strategy as discussed in [6].

At each iteration, the algorithm evaluates the function

e(h) and a member of the generalized gradient. More

details of the algorithm may be found in [8]. We note

that our algorithm is guaranteed only to �nd a local

minimum.

3. EXAMPLES

3.1. Projection Filter Design

We �rst consider the problem of designing the system

shown in Figure 3 with projection constraints on the

multirate system. The design problem is to �nd the

best multirate approximation to the ideal �lter H ideal;

we call the resulting multirate system a projection �lter.

Figure 3: Model-matching for projection �lters.

We let L = 2 and let the lengths of H1 and H2 be

N1 = N2 = 101. We compare the output of a multirate

�lter to that of a linear phase ideal �lter H ideal with

a magnitude response in the frequency domain of 1

in [0; 0:23] and 0 in [0:27; 0:5]. The design problem

is to minimize the relative `2 output error (1), kwk2,
subject to the projection (biorthogonality) constraint,

[h1 � h2](2n) = 0, where 0�0 denotes convolution.
The normed frequency error response,

N(f) =
1p
M
kE(f;h)k2; (11)

of the model-matching system for the optimal design

is shown in Figure 4. Shown in Figure 5 are the
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Figure 4: Optimal normed frequency error response for

the projection �lter.

responses of the optimal commutator form �lters G1

and G2 (see Figure 2). Note that the responses overlap

signi�cantly. The responses correspond to the �lters

that are switched between in a commutator fashion.

Projection �lters satisfy two main objectives that

are important in signal processing. First, the response

is a true projection which allows decomposition in terms

of the projection subspaces. Second, the system is the

best approximation to a linear time-invariant (LTI) �l-

ter. This property is unique since it o�ers a distinct

advantage over LTI systems{there is no LTI FIR �l-

ter which approximates a lowpass �lter that is also a

projection.

3.2. Decimator Design

We consider the design of a basic downsampling struc-

ture for e�cient computation, see Figure 6(a). A sim-

pli�cation of Figure 6(a) is shown in Figure 6(b) where

H(z) = H1(z)H2(z
M1) : : : Hs(z

M1:::Ms�1) and

M =M1M2 : : :Ms: (12)

In this case, structural constraints have been imposed

on the system in Figure 6(b).

We letM = 10, require that e(hoptimal) � 0:01, and

let the ideal �lter be linear phase with magnitude 1 in

[0; 0:04] and magnitude 0 in [0:05; 0:5]. The delay of

the ideal �lter varies according to the choice of the

�lter lengths in the approximating system.

Several designs were performed with both one and

two stages. Table 1 shows the lowest MPS (multiplica-

tions per second) for a given M1 and M2 while varying

N1 and N2 (the lengths of the FIR �lters H1 and H2).
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Figure 5: Optimal commutator form �lter responses

for the projection �lter.

(a)

(b)

Figure 6: Cascade structure. (a) Multistage form; (b)

equivalent single-stage form.

M1 M2 N1 N2 e(hoptimal) MPS

2 5 3 43 0.0091 29

5 2 10 18 0.0093 19

10 - 85 - 0.0097 42.5

Table 1: Optimal e(h) for various parameters.

MPS were calculated using the standard methods in [9];

the input sampling rate is 10 Hz (so that the resulting

output sampling rate is not fractional). The �lters in

the approximating system were constrained to be lin-

ear phase. The optimal e(h) was found for a �xed M1

and M2 using several steps. First, M1 and M2 were

estimated using the techniques in [9]. Next M1 was

reduced until the optimal e(h) exceeded 0.01. Finally,

M1 and M2 were adjusted to try to achieve smaller

MPS while still having optimal e(h) less than 0.01.

Table 1 shows that M1 = 5 and M2 = 2 is the

best choice in terms of MPS. The general rule that M1

should be chosen greater than M2 [9] appears to apply

to our new design method, although the design meth-

ods in [9] were derived under di�erent assumptions.



For comparison, a design with M1 = 5 and M2 = 2

was performed using Chebyshev (Remez) design for

each of the �lters H1 and H2. Filters were designed

with don't care bands as in [9]. Repeated designs us-

ing the Remez algorithm separately for each Hi were

performed to reduce the MPS and still maintain an

e(h) less than 0.01. The resulting design has 36:5

MPS, N1 = 17, and N2 = 39. The new method re-

duces the computation rate by 48 percent over a Cheby-

shev method. Another comparison was also performed

with IFIR �lters [10]. For these �lters, N1 = 17 and

N2 = 37 achieved the design requirement. The compu-

tation rate for the IFIR case is 35.5 MPS. In this case,

the optimal design results in a 46 percent reduction in

computation.

A comparison of the normed frequency error re-

sponses,N(f) = 1p
M
kE(f;h)k2, of the model-matching

system for the optimal design and the Chebyshev de-

sign for M1 = 5, M2 = 2 is shown in Figure 7. Note

that [0:04; 0:05] is excluded in the �gure since this range

is a transition region. The normed frequency error

response indicates the error the system makes at a
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Figure 7: Comparison of optimal design (solid line, 19

MPS) and Chebyshev design (dashed line, 36.5 MPS).

�xed frequency [3]. Note that the optimal design has

a normed frequency error response which is equiripple

whereas the Chebyshev design has uneven local max-

ima.

The Chebyshev (Remez) design does not perform

well since Chebyshev design optimizes the response of

a system for single frequencies; i.e., Chebyshev design

optimizes for a worst case input which is concentrated

at a single frequency. For multirate design, this single

frequency input is not necessarily the worst-case input.

Instead, the `2 model-matching criterion shows that

the worst case signals for multirate systems are inputs

concentrated at f; f +1=M; : : : ; f +(M � 1)=M . Thus,

the mismatch of the Chebyshev design method to the

worst-case signals creates a suboptimal design.

4. CONCLUSIONS

We have introduced a new method for the design of con-

strained multirate systems. This method includes the

evaluation of designs via a relative `2 error criterion as

well as the optimal design of systems using nonsmooth

optimization methods.
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