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ABSTRACT

Conjugate quadrature �lters with multiple zeros at 1 have
classical applications to unitary subband coding of signals
using exact reconstruction �lter banks. Recent work shows
how to construct, given a set of n negative numbers, a CQF
whose degree does not exceed 2n-1 and whose zeros con-
tain the speci�ed negative numbers, and applies such �lters
to interpolatory subdivision and to wavelet construction in
Sobelov spaces. This paper describes a recent result of the
authors which extends this construction for an arbitrary set
of n nonzero complex numbers that contains no negative or
negative reciprocal conjugate pairs. Detailed derivations
are to be given elsewhere. We design several �lters using
an exchange algorithm to illustrate a conjecture concerning
the minimal degree and we discuss an application to coding
transient acoustic signals.

1. INTRODUCTION

For convenience identify �lters (�nite sequences) with their
z-transforms (Laurent polynomials) and let LR; LN de-
note the set �lters whose restriction to the unit circle
T := fz 2 C : jzj = 1g is real, nonnegative, respectively. In
this paper n denotes a positive integer, � denotes a set of
n (counted with multiplicity) nonzero complex numbers,
and u(�) denotes the subset of the unit disc obtained by
replacing the elements in � outside the unit disc by their
reciprocal conjugates.

Mintzer [1], Smith and Barnwell [2], [3], and Vetterli [4]
invented conjugate quadrature �lters P , that satisfy

jP (z)j2 + jP (�z)j2 = 1; z 2 T; (1)

to perform unitary (lossless) subband coding of discrete sig-
nals using exact reconstruction �lter banks. Let Q(�) de-
note the set of all CQF's whose zeros contain �: Recently
Micchelli showed if � a subset of negative numbers, Q(�)
contains a �lter having degree � 2n � 1 and applied these
�lters to interpolatory subdivision [5] and to wavelet con-
struction in Sobolev spaces [6]. The construction of sym-
metric CQF's, necessarily having complex coe�cients, were
described by Lawton in [7], where their utility for handling
boundaries in signal coding was demonstrated. In a recent
paper [8] we proved:

Result 1 Q(�) 6= � i�

(� [ �
�1
) \ �(� [ �

�1
) = �: (2)

The only if part follows directly from (1). The if part
is proved by constructing a minimal degree P 2 Q(�)
as follows: de�ne S1(z) :=

Q
�2�

(z � �); z 2 C; and con-

struct �lters P1; P2 2 LN by P1(z) := jS1(z)j2; z 2 T; and
P2(z) := P1(�z); z 2 C: Clearly the pair P1; P2 satis�es
the hypothesis of the following result proved in [8]

Result 2 If the pair P1; P2 2 LN have no common zeros in
Cnf0g; there exists a pair Q1; Q2 2 LN such that

P1(z)Q1(z) + P2(z)Q2(z) = 1: (3)

Choose a pair Q1; Q2 2 LN whose coe�cient sequences have
minimal lengths and that satisfy (3). De�ne W 2 LN by
W (z) = 1=2(Q1(z) +Q2(�z)): Then construct a spectral
factor S2 of W whose coe�cient sequence is supported on
the nonegative integers including 0 and de�ne P := S1S2:

Then (3) implies P 2 Q(�) and has minimal degree. The
�lter G := P1W is interpolatory since G(z) + G(�z) = 1
and P is a spectral factor of G: Furthermore, if � = � then
W will have real coe�cients. Therefore P will have real
coe�cients if S2 is chosen to have real coe�cients. This
will be the case if S2 is the minimal phase (roots are in unit
disc) spectral factor of W:

We describe only the basic concept of our proof of Result 2
given in [8]. First, we used standard algebraic methods to
construct minimal length �lters B1; B2 2 LR such that

P1B1 + P2B2 = 1 (4)

and showed that a pair of �lters Q1; Q2 2 LR satis�es (3)
if and only if there exists F 2 LR such that

Q1 = B1 � FP2; Q2 = B2 + FP1: (5)

Second, we de�ned rational functions

R1 := �B2

P1
; R2 :=

B1

P2
(6)

and showed Q1 and Q2 de�ned by (5) are in LN if and only
if

R1(z) � F (z) � R2(z); z 2 T: (7)

Third, we used approximation theoretic methods to show
the existence of F 2 LR that satis�es (7).
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Figure 1. (a) * = 2 Speci�ed Zeros, o = 1 Sup-
plemental Zero. (b) R1, F, R2. (c) Nonnegative
Frequency Response of Interpolatory Filter G. (d)
Complex Frequency Response of CQF P.

2. FILTER DESIGN

Using the notation in the previous section de�ne �lters
B := B1P1 �B2P2 and D := 2P1P2: Therefore

R1 =
B � 1

D
; R2 =

B + 1

D
(8)

and (7) is equivalent to

max
z2T

jB(z)� F (z)D(z)j � 1: (9)

Clearly if F has minimal degree then Q1 and Q2 will have
minimal degrees. If D has no roots on the unit circle then
the minimal degree F that satis�es (6) may be computed
(1) by using the standard Remez exchange algorithm if D
and B have real coe�cients [9], (2) by using a multiple ex-
change algorithm if D or B has complex coe�cients [10],
[11]. If D has roots on the unit circle modi�cations are re-
quired.

De�nition The set � is called admissible if it satis�es (3)
and there exists P 2 Q(�) having degree � 2n� 1:

Assume � satis�es (2), construct P1; P2 as above, and
(uniquely) construct minimal length B1 and B2 as in [8]
so that the �lter B has average value 0 over T: The follow-
ing result is obvious:

Result 3 � is admissible if and only if any of the following
equivalent conditions hold:

1. maxz2T R1(z) � 0 � minz2T R2(z);

2. the choice F = 0 satis�es (7),

3. jB(z)j � 1; z 2 T;

4. the choice F = 0 satis�es (9),

5. u(�) is admissible.
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Figure 2. (a) * = 2 Speci�ed Zeros, o = 5 Sup-
plemental Zeros. (b) R1, F, R2. (c) Nonnegative
Frequency Response of Interpolatory Filter G. (d)
Complex Frequency Response of CQF P.

We consider conditions on � that ensure admissibility.
From the last conditon, we may assume � is a subset of
the unit disc. The zeros of P that are not in � are called
supplemental zeros of �: De�ne a region A � Cn f0g by

A :=

�
x+ iy : r2 := x2 + y2 � 1 ; x < � r2

1 + r2

�
(10)

Result 4 If n = 1; � is admissible. If n = 2 and � = f�; �g
is a subset of the unit disc then � is admissible i� � � A
or �� � A:

Proof The fact P (z) := (1 + j�j2)�1(z � �) is a CQF
for any nonzero � proves the �rst statement. Assume
� = f�1; �2g with j�kj � 1 and � = �: Clearly � is ad-
missible i� there exists �3 with j�3j � 1 and � > 0 such
that P (z) := �(z � �1)(z � �2)(z � �3) satis�es (1). This

is equivalent to �1 + �1
�1

+ �2 + �2
�1

+ �3 + �3
�1

= 0:
Clearly, there exists �3 satisfying this condition if and only

if

����1 + �1
�1

+ �2 + �2
�1
��� � 2: If �1 = rei� and �2 = re�i�

then this condition becomes
��2(r + r�1) cos �

�� � 2 which
concludes the proof.

Admissibility Conjecture If � � Z then � is admis-
sible.

Figures 1-4 illustrate the design of minimal degree
P 2 Q(�) with

� = f�:7;�:5g; f�:7; :5g; f�:2 + :7i;�:2� :7ig;
f�:6 + :8i;�:6� :8i;�:2 + :3i;�:2� :3i;�:5g

respectively. All sets satisfy � = � and the �lters
B;D;G; P have real coe�cients. The upper left (a) shows
the boundary of the unit disc and the set S; the speci�ed
roots by � ; and the supplemental roots by o : The upper



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)
−4 −2 0 2 4

−40

−20

0

20

40

(b)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

(c)
−4 −2 0 2 4

−0.5

0

0.5

1

(d)

Figure 3. (a) * = 2 Speci�ed Zeros, o = 3 Sup-
plemental Zeros. (b) R1, F, R2. (c) Nonnegative
Frequency Response of Interpolatory Filter G. (d)
Complex Frequency Response of CQF C.

right (b) plots R1 � F � R2 where the smallest length
�lter F satisfying the inequalities was computed using the
MATLAB Remez algorithm. The lower left (c) plots the
frequency response of the interpolatory �lter G = P1W

and the lower right (d) plots the real (upper) and imagi-
nary (lower) components of the frequency response of P: In
these cases P is the unique minimal phase factor of G and
the zeros of P are the union of � and the set of supple-
mental zeros. The fact � in (Fig. 1) is admissible while �
(Fig. 2) and (Fig. 3) are not is implied by Result 4. The
fact � in (Fig. 4) is admissible supports the Admissibility
Conjecture. All the results illustrate the equivalence of the
conditions in Result 3.

3. PROCESSING TRANSIENT SIGNALS

Let P be a CQF whose coe�cient sequence p is supported
on f0; 1; : : : ; 2m � 1g and de�ne Q, its twin CQF, to have
coe�cient sequence q

qn := (�1)np2m�1�n; n 2 Z: (11)

For any sequence s; de�ne sequences Tp s and Tq s by

(Tps)k :=
p
2
X
n2Z

pn�2ksn; k 2 Z (12)

(Tqs)k :=
p
2
X
n2Z

qn�2ksn; k 2 Z: (13)

Since the sequence q is also a CQF the mapping
s! (Tps; Tqs) is unitary (lossless) since for any �nitely sup-
ported sequence s

X
k2Z

jskj2 =
X
k2Z

j(Tps)kj2 +
X
k2Z

j(Tqs)kj2:

Therefore, this mapping has an inverse given by its adjoint,
and hence s can be exactly reconstructed from Tps and Tqs
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Figure 4. (a) * = 5 Speci�ed Zeros, o = 4 Sup-
plemental Zeros. (b) R1, F, R2. (c) Nonnegative
Frequency Response of Interpolatory Filter G. (d)
Complex Frequency Response of CQF C.

by the formula

sk =
p
2
X
n2Z

pk�2n(Tps)n +
p
2
X
n2Z

qk�2n(Tqs)n; k 2 Z:

The design of a CQF with prescribed zeros has potential ap-
plications to coding acoustic transient signals. As explained
in [8], the mechanical theory of vibrations [12] implies such
signals are comprised of linear combinations of functions
having the form

s
j

k := k
j
�
k (14)

restricted to half intervals of integers Z \ [a;1]: Further-
more, as shown in [8], if p is the coe�cient sequence of a
CQF P having � as a zero of multiplicity j + 1; then

(Th s
j)k = 0 (15)

if 2k is su�ciently far from the onset a of the transient.

Figure 5 illustrates coding transient signals using CQF's
designed to have speci�ed zeros. Part (a) shows a conju-
gate pair � = f�; �g of speci�ed zeros and 1 supplemental
zero for a P 2 Q(�) having degree three. Part (b) shows
the real signal s de�ned by

sk := �
k
�[1;infty](k) + �

k
�[1;infty](k); (16)

which consists of a sum of functions described by (14). Parts
(c) and (d) show the signals Tps and Tqs; where h is the
twin CQF sequence de�ned in (11), and Tp; Tq are de�ned
by (12), (13) respectively. Note the subband coding has
essentially compressed the signal s into half the number of
samples.
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Figure 5. (a) zeros of �lter (b) transient acoustic
signal corresponding to these zeros, (c) decomposi-
tion of suppression band (d) decomposition of pass-
ing band.
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