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ABSTRACT

In this paper, we present a novel way to design biorthog-
onal and paraunitary linear phase(LPPUFB) �lter banks.
The square error of the perfect reconstruction condition is
expressed in quadratic form of �lter coe�cients and the cost
function is minimized by solving linear equation iteratively
without nonlinear optimization. With some modi�cations,
the method can be extended to the design of paraunitary
�lter banks. Using this method, we can design LPPUFB
with many channels easily and quickly. Design examples
are given to validate the proposed method.

1. INTRODUCTION

In recent years, digital �lter banks have been well stud-
ied from various points of view and are used in various
applications in speech, image processing and communica-
tions [1]-[3]. In this paper, we consider the maximally-
decimated M -channel �lter bank. The input signal is sep-
arated into M frequency subbands by M analysis �lters
Hk(z), and the M subband signals are then decimated (by
M) to preserve the sampling rate of the system. The result-
ing M subband signals can be processed (coded, processed,
and/or transmitted) and they are combined by interpola-
tors and a set of M synthesis �lters Fk(z) to form the re-
constructed signal. Filter banks where the reconstructed
signal y(n) is a time-delayed version of the input x(n), i.e.,
y(n) = cx(n � n0); c 6= 0, are called perfect reconstruction
�lter banks (PRFB). There are many choices of the anal-
ysis �lter Hk(z) and synthesis �lter Fk(z) that will satisfy
the perfect reconstruction conditions. However, for image
processing applications, it is important for Hk(z) and Fk(z)
to be linear phase. If the analysis �lters have linear phase,
all the subband signals are delayed by the same group de-
lay. Moreover, linear-phase �lters allow us to use simple
symmetric extension methods to accurately handle �nite-
length signals' boundaries[4]. In this paper, we only discuss
linear phase perfect reconstruction �lter banks (LPPRFB).
Several design methods of M-channel LPPRFB have been
reported [?]-[6]. Many of the reported methods use lattice
structure which consists of orthogonal matrices as build-
ing blocks. These design methods require nonlinear opti-
mization which is computational complex and sensitive to
initial values. Authors have presented a design method of
LPPRFB without nonlinear optimization[7]. This method
is based on cancellation of all distortions occuring in FB.

The cost function is expressed as minimization problem
of all distortions in frequency domain and formulated as
quadratic form of �lter coe�cients. Although nonlinear op-
timization is not needed, the design time is long since we
have to compute the integration in frequency domain.

In this paper, a new design of LPPRFB based on
time-domain constraints is presented. PR condition using
polyphase matrix can be transformed into time-domain con-
ditions. Cost function is de�ned as PR constraints such
that time-domain constraints are minimized and it can be
written as quadratic functions of �lter coe�cients vectors of
both analysis and synthesis systems. This method solves a
set of linear equations iteratively without the use of nonlin-
ear optimization. The most signi�cant di�erence between
the proposed method and the conventional ones is to min-
imize least square error of PR constraints in time-domain
instead of frequency domain. Since the objective function
is in quadratic form, one can iteratively solve for individual
variables while keeping the other as constant. The overall
error can be shown to be monotonously decreasing and an
optimal solution can be obtained. This method is modi�ed
to design paraunitary �lter bank by observing that the syn-
thesis �lters are time-reversed version of the analysis �lters.

2. PRELIMINARIES

Fig.1 shows a maximally-decimated M-channel �lter
bank where Hk(z) and Fk(z) denote analysis and synthesis
�lters, respectively.

The analysis and synthesis �lters are expressed in
polyphase component form, using type-1 polyphase �lters
for the analysis and type-2 polyphase �lters for the synthe-
sis,
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Figure 1. Maximally-decimated M -channel �lter
bank.
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We de�ne the polyphase matrix of analysis and synthesis
bank as [E(z)]k;j = Ek;j(z) and [R(z)]k;j = Rk;j(z). Then
the perfect reconstruction condition can be de�ned using
polyphase matrices as

R(z)E(z) = z
�p
I; p > 0 (1)

Time-domain constraints of PRFB is de�ned by

N�1X
n=0

hk(n)fm(n�M`) = �(k �m)�(`) (2)

In paraunitary case, the synthesis �lters are chosen as the
time reversed versions of the analysis �lters

Fk(z) = z
�(N�1)

Hk(z
�1) 0 � k �M � 1 (3)

Here, R(z) = ~E(z) = ET (z�1) and the PR condition be-
comes

~E(z)E(z) = I: (4)

Similar to the nonparaunitary case, time-domain condition
of PRPUFB is expressed by

N�1X
n=0

hk(n)hm(n�M`) = �(k �m)�(`) (5)

In this paper, we show a new design method of PRFB based
on the time-domain constraints as mentioned above.
There exists solution to Eq.(7) i� Theorem 1 is satis�ed

by all the analysis �lters [?][8].

Theorem 1: For an M-channel linear-phase perfect recon-
struction �lter banks with �lter lengths Ni = KiM+�; 0 �
� < M; Ki � 1, the symmetric conditions are:

1. If M is even and � is even, there are M
2

symmetric,

and M
2
antisymmetric �lters.

2. If M is odd, there are (M+1
2

) symmetric and (M�1
2

)
antisymmetric �lters.

The length conditions are:

1. If M is even and � is even,
PM�1

i=0
Ki is even.

2. If M is odd and � is even,
PM�1

i=0
Ki is odd.

3. If M is odd and � is odd,
PM�1

i=0
Ki is even.

3. DESIGN OF LINEAR-PHASE PERFECT

RECONSTRUCTION FILTER BANKS

In this section, we present a new design method for
biorthogonal LP �lter banks, where the PR condition is
expressed in quadratic form of �lter coe�cients

3.1. Biorthogonal Filter Banks

A. Cost Function (even M)
In the proposed method, the least square error of the PR

condition expressed by Eq.(2) is minimized. A cost function
� is de�ned as
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The �rst term denotes the orthogonality condition and the
second term corresponds to the shift-orthogonality condi-
tion. The above equation can be rewritten in matrix form
as

N�1X
n=0

fj(n)hk(n� `M) = f̂
T
j Q`ĥk (7)

where f̂j and ĥk are vectors of coe�cients from Fk(z) and
Hk(z), respectively and Q` is a square matrix of size N as

Q` =

M` f
2
664
0 � � � 0

1 0 0

. . .

0 1 0

3
775 (8)

The case of ` = 0 are referred to as the orthogonality con-
ditions; the remaining cases are referred to as the shift-
orthogonality conditions. Since the analysis and synthesis
�lters have linear phase and the �lter length of the even
channel �lter banks must be even according to Theorem 1,
their impulse response with even length are expressed by
half of the number of coe�cients as:

ĥi =

�
I

(�1)iJ

�
hi =Wihi (9)

where hi is the vector with half of the number of coe�-
cients and J is the anti-diagonal matrix. The �lter with
even index is symmetric and the odd-indexed one is anti-
symmetric. With these matrices, the �rst term of Eq.(6)
can be rewritten as,
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where

Q0;i;j =W
T
i Q0Wj =

�
2I ; i+ j = 2p
0 ; otherwise

(11)



The second term �b can be expressed similarly as
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The overall cost function � = �a+�b can be written as
follows,
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If fi is �xed, the cost function is regarded as quadratic form
of �lter coe�cient vector of the analysis �lter. The mini-
mization of this error is achieved when @�

@hi

= 0:

@�

@hj
= 2hTj

(
b(N�1)=McX

`=0

M�1X
i=0

Q
T
`;i;j fif

T
i Q`;i;j

)

�
4

M
fTj

= 2hTj Pj �
4
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f
T
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where we have used Q0;i;i = 2I. Pj is a square matrix of
size N=2 and P0 = P2j , P1 = P2j+1 since W0 =W2j and
W1 =W2j+1. hj can be obtained by calculating only two
inverse matrices of sizes N=2 independent of the number of
channels as

hj =
2

M
P
�T
(j mod 2)fj (15)

Although one can not prove that P�1 exists, it is always
true in all of our design examples. However, form exper-
imentation we have found that it exist. Similary, one can
obtain fi by �xing hj.

B. Design algorithm of LP biorthogonal FB

The design procedure is as follows;

1. Design analysis �lters using any suitable method such
as LMS or remez algorithm.

2. Fix the coe�cients of analysis �lters hi and then, cal-
culate synthesis �lters fj from Eq.(15)

3. Fix the coe�cients of synthesis �lters fj to the value
obtained by the above equation. Then, calculate anal-
ysis �lters hi in the same way.

4. Terminate if the cost function � is small enough(� �

10�10), otherwise continue the algorithm (back to step
2)

The above algorithm yields biorthogonal �lter banks and
it only requires solving linear equation iteratively. Conver-
gence of the algorithm is guaranteed and cost function can
be shown to be monotonously decreasing. [7]
In our method, the cost function does not impose any

constraints in the frequency response of the analysis and
synthesis �lters. However, if the intial frequency responses

of the analysis �lters have good frequency selectivity, the
resulting synthesis �lters must also have good responses for
aliasing cancellation. Therefore if we design the initial anal-
ysis �lter with suitable property, �lter banks with good re-
sponse can be obtained and are independent of the initial
values. This has been con�rmed by design examples.

C. Cost function (odd M)

Design procedure of odd-channel LPPRFB is similar to
even-channel one. Since the �lter length of each �lters must
be odd in odd-channel, the impulse responses are rewritten
by
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where h2i and h2i+1 are vectors with size (N + 1)=2 and
(N � 1)=2, respectively. Substituting these equations into
Eq.(14), same procedure as in the even case is applicable to
the design of LPPRFB with odd M .

3.2. LP Paraunitary Filter Banks

The main di�erence between paraunitary and biorthogonal
FB is in the choice of synthesis system. In paraunitary case,
synthesis system is time reversed version of the analysis
bank which implies that

hk(n) = fk(n) for symmetry

hk(n) = �fk(n) for antisymmetry

One can use the same design algorithm as in the previous
section and the only di�erence is that the coe�cient vector
is chosen to be the average of hk(n) and fk(n) in each it-
eration. In other words, the average value of analysis and
synthesis �lters is used for fk instead of solving for fk in the
step 3 of the design algorithm.

f
(i+1)
k = (h

(i)
k + f

(i)
k )=2 (17)

B. M-channel orthonormal and symmetric wavelet with K-
regularities
It has been shown that M band orthonormal wavelets are
characterized by the unitary scaling function H0(z). The
unitary scaling function is K-regular if the lowpass �lter
H0(z) has the form

H0(z) =

�
1 + z�1 + � � �+ z�(M�1)

M

�K
Ĥ(z) (18)



The impulse response of H0(z) is expressed by

h0 = (
1

M
u�)

K
ĥ0 (19)

where (�) denotes convolution and u is the step response of
size M . The above equation is rewritten using the matrix
form as

h0 =

 
KY
k=1

Uk

!
ĥ0 (20)

whereUk is (N̂+(M�1)k)�(N̂+(M�1)(k�1)) matrix that
corresponds to the convolution matrix with step response
of size M . The remaining �lters except for lowpass �lter
are same as that in Eq.(9). In this case, we need to �nd
three inverse matrices.

4. DESIGN EXAMPLES

In this section, we show some design examples of non-
paraunitary and paraunitary �lter banks. GUI (Graph-
ical user interface) software to design LPPRFB can be
found at url address http://saigon.ece.wisc.edu/�waveweb/
QMF.html under SOFTWARE and Linear-Phase near PR
Filter Bank Design.

A.30 channel LP paraunitary �lter bank with PMI
30-channel LPPUFB with length 60 is designed. We have
imposed the PMI property on this �lter bank. Fig.2 shows
the frequency responses of the analysis and synthesis �lters.
This results are obtained after 7 iterations in 3.86 sec and
the PR error is 10�10.

B. 9-channel LP paraunitary �lter bank with 1-regularity
9-channel LPPUFB with 1-regularity is designed. The
length of each analysis �lter is 17. Fig.3 shows the fre-
quency responses of the analysis and synthesis �lters. This
results are obtained after 24 iterations in 3.19 sec and the
PR error is 10�10.
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Figure 2. 30-channel paraunitary �lter bank with
length 60.

5. CONCLUSION

In this paper, we propose a time-domain approach to
design biorthogonal and paraunitary �lter banks with lin-
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Figure 3. 9-channel paraunitary �lter bank with 1-
regularity

ear phase. Instead of applying nonlinear optimization, the
proposed method solves a set of linear equations iteratively
where PR error is minimized instead of imposing it as a
design constraint. As a result, a more e�cient method is
obtained when compared to LPPRFB design method in fre-
quency domain because we do not need to calculate the
integral. LPPUFB with arbitrary number of channel and
length satisfying Theorem 1 can be designed using the same
algorithm but averaging the analysis and synthesis �lter co-
e�cients. The proposed method can be extended to the de-
sign of LPPRFB with pairwise mirror image property and
wavelets with K-reguralities by imposing such properties as
design constraints on the transfer functions of analysis and
synthesis �lters.
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