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ABSTRACT

In this paper, we study various global optimization
methods for designing QMF (quadrature mirror �lter)
�lter banks. We formulate the design problem as a
nonlinear constrained optimization problem, using the
reconstruction error as the objective, and other perfor-
mance metrics as constraints. This formulation allows
us to search for designs that improve over the best
existing designs. We present NOVEL, a global opti-
mization method for solving nonlinear continuous con-
strained optimization problems. We show that NOVEL
�nds better designs with respect to simulated anneal-
ing and genetic algorithms in solving QMF benchmark
design problems. We also show that relaxing the con-
straints on transition bandwidth and stopband energy
leads to signi�cant improvements in the other perfor-
mance measures.

1. INTRODUCTION

Digital �lter banks have been applied in many engi-
neering �elds. Their design objectives consist of their
overall performance and the performance of each indi-
vidual �lter. Figure 1 summarizes the various design
objectives for measuring design quality. In general, �l-
ter bank-design problems are multi-objective, continu-
ous, nonlinear optimization problems.

Algorithms for designing �lter banks can be clas-
si�ed into optimization-based and non-optimization-
based. In optimization-based methods, a design prob-
lem is formulated as a multi-objective nonlinear opti-
mization problem [4] whose form may be application-
and �lter-dependent. The problem is then converted
into a single-objective optimization problem and solved
by existing optimization methods, such as gradient-
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Filter Design Objectives

Overall Minimize amplitude distortion

Filter Minimize aliasing distortion

Bank Minimize phase distortion

Minimize stopband ripple (�s)
Single Minimize passpand ripple (�p)

Filter Minimize transition bandwidth (Tt)

Minimize stopband energy (Es)
Maximize passband atness (Ep)
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Figure 1: Possible design objectives of �lter banks and
an illustration of the design objectives of a single low-
pass �lter. ([0; !p] is the pass band; [!s; �], the stop
band; [!p; !s], the transition band. )

descent, Lagrange-multiplier, quasi-Newton, simulated-
annealing, and genetics-based methods. On the other
hand, �lter-bank design problems have also been solved
by non-optimization-based algorithms, which include
spectral factorization and heuristic methods. These
methods generally do not continue to �nd better de-
signs once a suboptimal design has been found.

In this paper, we study global optimization methods
for designing QMF FIR �lter banks. These �lter banks
are an important class of �lter banks that have been
studied extensively. In a two-band QMF �lter bank,
the reconstructed signal is [1]:

X̂(z) =
1

2
[H0(z)F0(z) + H1(z)F1(z)] X(z) (1)

+
1

2
[H0(�z)F0(z) + H1(�z)F1(z)] X(�z):



where X(z) is the original signal, and Hi(z) and Fi(z)
are, respectively, the response of the analysis and syn-
thesis �lters. To perfectly reconstruct the original sig-
nal based on X̂, we have to eliminate aliasing, ampli-
tude, and phase distortions. QMF FIR �lter banks
implement perfect reconstruction by setting F0(z) =
H1(�z), F1(z) = �H0(�z) andH1(z) = H0(�z), lead-
ing to one prototype �lter H0(z) in the system, linear
phase, and zero aliasing and phase distortions.

2. OPTIMIZATION DESIGN OF QMF

FILTER BANKS

The design of QMF �lter banks can be formulated as
a multi-objective unconstrained optimization or as a
single-objective constrained optimization.

In a multi-objective formulation, the goals can be to
(a) minimize the amplitude distortion (reconstruction
error) of the overall �lter bank, and (b) maximize the
performance of the individual prototype �lter H0(z).
A possible formulation is to optimize the design with
respect to a subset of the measures de�ned in Figure 1.

Min Er and Es (2)

Unfortunately, optimal solutions to the simpli�ed opti-
mization problem are not necessarily optimal solutions
to the original problem. Oftentimes, performance mea-
sures not included in the formulation are compromised.

In general, optimal solutions of a multi-objective
problem form a Pareto optimal frontier such that one
solution on this frontier is not dominated by another.
One approach to �nd a point on the Pareto frontier is
to optimize a weighted sum of all the objectives. This
approach has di�culty when Pareto frontier points of
certain characteristics are desired, such as those with
certain transition bandwidth. Di�erent combinations
of weights must be tested by trial and error until a
desired �lter is found. When the desired characteristics
are di�cult to satisfy, trial and error is not e�ective
in �nding feasible designs. In this case, constrained
formulation should be used instead.

2.1. Single-Objective Constrained Formulation

In this formulation, constraints are de�ned with respect
to a reference design. Constraint-based methods have
been applied to design QMF �lter banks in both the
frequency and the time domains. In the frequency do-
main, the most often considered objectives are the re-
construction error, Er, and the stopband ripple. As
stopband ripples cannot be formulated in closed form,
stopband attenuation is used instead (represented as
Es in (2)). In the time domain, Nayebi gave a time-
domain formulation with constraints in the frequency

domain and designed �lter banks using an iterative
time-domain design algorithm.

In this paper, we formulate the design of a QMF
�lter bank in the most general form as a constrained
nonlinear optimization problem as follows.

Minimize Er (3)

subject to Ep � �Ep
Es � �Es

�p � ��p �s � ��s

Tt � �Tt

where �Ep
, �Es

, ��p , ��s and �Tt are constraint bounds
obtained in the best known design (with possibly some
constraint values relaxed or tightened in order to obtain
designs of di�erent trade-o�s). The goal here is to �nd
designs whose performance measures are better than
or equal to those of the reference design. Since the
objective and constraints are nonlinear, the problem is
multi-modal with many local minima.

2.2. Nonlinear Optimization Methods

Finding global optimal solutions of nonlinear continu-
ous constrained problems is one of the most challenging
tasks in optimization. There are two distinct strategies
to handle constraints. (a) Absorb all constraints into
the objective and weigh them by penalty terms. This
is not e�ective because it is hard to choose appropriate
penalty terms when constraints are violated. (b) Ab-
sorb constraints into a Lagrangian function, which is
the sum of the objective and the constraints weighted
by Lagrange multipliers.

In a Lagrangian formulation, a local minimum in a
feasible region is a saddle point at which the objective
function is at a local minimum and the weighted sum
of the constraints is at a local maximum. By using this
property, saddle points can be found by local search

methods that perform gradient descents in the original-
variable space and gradient ascents in the Lagrange-
variable space.

Since local search methods converge to local min-
ima, global search methods are needed to bring the
search out of local minima. There are two classes of
global search methods. (a) Deterministic methods, such
as covering methods and generalized descent methods,
do not work well when the search space is large. (b)
Probabilistic methods are weak in either their local or
global search. For instance, gradient information is
not used well in simulated annealing and evolutionary
algorithms. In contrast, gradient descent algorithms
with multistarts and random probing are weak in their
global search strategy.



2.3. NOVEL Global Optimization Method

In this subsection, we describe NOVEL (Nonlinear Op-
timization via External Lead) [3], a global optimiza-
tion method that relies on an external force to pull the
search out of local minima. Starting from a Lagrangian
formulation, our implementation has two stages.

In the global-search stage, NOVEL looks for good
starting points for the local-search stage. This is im-
portant because it �rst identi�es good starting points
before applying expensive local searches. This avoids
repeatedly determining unpromising local minima as
in multi-start algorithms and applying computation-
ally expensive descent algorithms from random start-
ing points. The result of this stage is a trajectory on
the Lagrangian-function space. The dynamics of the
trajectory is controlled by two forces: local gradient to
pull the trajectory towards a local minimum, and the
force exerted by a gradient-independent trace function
to pull the trajectory out of a local minimum. The
latter is particularly important because it provides a
continuous means of going from one local region to an-
other, avoiding problems in methods that determine
new starting points heuristically and losing valuable
local information found in a local search.

In the local-search stage, NOVEL uses promising
starting points identi�ed in the global-search stage and
applies local searches to �nd saddle points in the La-
grangian function space. These local searches include
gradient descents in the original-variable space and gra-
dient ascents in the Lagrange-variable space. The de-
signs found correspond to designs whose constraints are
satis�ed and whose objective is at a local minimum.

3. EXPERIMENTAL RESULTS

We have applied NOVEL to solve some QMF �lter-
bank design problems formulated by Johnston [2]. In
our designs, we have used (3) with constraint bounds
de�ned by those of Johnston's designs. Our goal is
to �nd designs that are better than Johnston's results
across all six performance measures, as well as those
when one or a few constraints are relaxed.

Table 1 compares the performance of 24D, 32D and
48D QMF �lter-bank designs obtained by NOVEL with
respect to Johnston's [2]. Our objective is to minimize
Er with other measures of Johnston's as constraints.
In all three cases, our designs have smaller reconstruc-
tion errors and passband energies, while all other mea-
sures are either better than or equal to those of John-
ston's [2].

Johnston used sampling in computing energy values
whereas NOVEL used closed-form integration. Hence,
designs found by Johnston are not necessarily at the

Table 1: Performance of 3 QMF �lters obtained by
NOVEL normalized with respect to Johnston's de-
signs [2]. The objective is to minimize Er with other
measureas of Johnston's as constraints.

Performance 24D 32D 48D

Er 0.75 0.87 0.95
Ep 0.77 0.80 0.76
Es 1.00 1.00 1.00
�p 1.00 1.00 1.00
�s 1.00 1.00 1.00
�! 1.00 1.00 1.00

Table 2: Comparing NOVEL, simulated annealing
(SA) and evolutionary algorithm (EA) in designing 32-
tap QMF �lters. Measurements are normalized with re-
spect to corresponding values of Johnston's designs [2].

NOVEL SA EA-Constr EA-Wt

32 c

Er 0.959 0.959 31.32 0.985

Ep 0.748 0.748 7.667e7 0.816
Es 1.000 1.000 8.015e5 1.000

�p 1.000 1.000 3899 0.999

�s 1.000 1.000 401.9 0.844
�! 1.000 1.000 0.000 1.001

32 d

Er 0.870 0.617 5.315 0.526
Ep 0.802 0.570 6.975e6 0.359

Es 1.000 1.000 2.112e4 0.994

�p 1.000 0.769 1089 0.724

�s 1.000 1.000 678.0 1.000

�! 1.000 1.015 0.000 1.042

32 e

Er 0.712 0.500 0.0943 0.507
Ep 0.896 0.582 1.542e5 0.590

Es 1.000 1.000 1262 0.999

�p 1.000 1.000 1698 0.997
�s 1.000 1.000 17.30 0.999

�! 1.000 1.013 0.000 1.013

local minima in a continuous formulation. To demon-
strate this, we applied local search in a continuous for-
mulation of the 24D design, starting from Johnston's
design. We found a design with a reconstruction error
of 3.83E-05, which is better than Johnston's result of
4.86E-05. By applying global search, NOVEL can fur-
ther improve the design to result in a reconstruction
error of 3.66E-05.

We have applied simulated annealing (SA) and evo-
lutionary algorithms (EA) in QMF �lter-bank design.
The SA we have used is Simann from netlib that works
on a weighted-sum formulation. The EA is Sprave's
Lice (Linear Cellular Evolution) that can be applied to
both constrained and weighted-sum formulations. We
have tried various parameter settings and report the
best solutions in Table 2.



Table 2 shows the performance of NOVEL, SA and
EA in designing 32-tap QMF �lters. SA and EA-Wt
use weighted-sum formulation with weight 1 for recon-
struction error and weight 10 for the rest performance
measures. EA-Constr works on the same constrained
formulation as NOVEL does. All methods were run
signi�cantly long, over 10 hours on a SUN SPARC20
workstation for each run.

NOVEL improves Johnston's solutions constantly.
SA gets the same result as NOVEL does for 32c �lter.
However for 32d and 32e �lters, the solution of SA has
larger transition bandwidth than Johnston's. EA-Wt
also has di�cult in improving over Johnston's solution
across all performance measures. In particular, solu-
tions of EA-Wt have larger transition bandwidth.

EA-Constr converges to solution with very small re-
construction errors, while constraints are violated sig-
ni�cantly. This is because constraints based on John-
ston's solutions form a tiny feasible region in the search
space. Randomly generated points have little chance of
being feasible. Infeasible solutions are ranked by objec-
tive values regardless degree of constraint violation.

To summarize, performance improvements in NOVEL
come from three sources. First, the closed-form formu-
lation used in NOVEL is more accurate than the sam-
pling method used in Johnston's approach. Local op-
tima found by NOVEL are true local optima. Second,
NOVEL uses a constrained formulation which allows it
to �nd designs that are guaranteed to be better than
or equal to Johnston's design with respect to all per-
formance measures. Third, NOVEL employs e�ective
global optimization strategies that allows it to explore
a large part of the search space without �rst commit-
ting to many expensive local searches.

By using our constrained formulation, we can fur-
ther study trade-o� in designing QMF �lter banks in
a controlled environment. Loosening constraints in (3)
generally leads to smaller reconstruction error.

Figure 2 demonstrates these trade-o�s for 32d QMF
�lter banks. In our experiments, we have used John-
ston's designs as our baselines. In the upper graph,
constraints on stopband ripple and energy are relaxed
by 5% to 50% from Johnston's solution. In the lower
graph, constraint on transition bandwidth is relaxed by
5% to 50% from Johnston's solution. The y-axis shows
the solution ratio, which is the ratio between the mea-
sure found by NOVEL and that of Johnston's.

When constraints on stopband ripple and energy
are loosened, reconstruction error, passband ripple and
energy decrease, while transition bandwidth is the same
with respect to di�erent relaxation ratio. When con-
straints on transition bandwidth is loosened, recon-
struction error, passband energy and decrease signif-
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Figure 2: Experimental results in relaxing the con-
straints with respect to Johnston's designs for 32D
QMFs. The x-axis shows the relaxation ratio of stop-
band energy and ripple (upper) , or transition band-
width (lower) as constraints in NOVEL with respect
to Johnston's value. The y-axis shows the ratio of the
measure found by NOVEL with respect to Johnston's.

icantly. Stopband ripple is reduced slightly while stop-
band energy is the same.
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