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ABSTRACT

A unified approach to the design of linear- and nonlinear-phase
QMFs is developed.   Formulated as an optimization problem,
the design procedure is shown to translate into an eigenvalue-
eigenvector problem.  To find the optimal  filter an algorithm is
presented, which typically converges in a few tens of iterations.
The flexibility of our design procedure permits several practical
extensions to be made readily.  These are (a) inclusion of
frequency-weighted stopband energy criteria, and (b) inclusion
of finite word-length constraints.  We have successfully used our
filters to applications such as image coding and analysis; here,
their use in wavelet-series analysis of oceanographic data is
demonstrated.

I. INTRODUCTION

The design of Quadrature Mirror Filters (QMF) has been widely
studied in the literature in recent years [1],[2],[4].  Interest in
their efficient design and application to subband coding of images
is receiving renewed attention due in part to the application in
wavelet-transform analysis of signals, images, and other systems.
Related previous work on the design of two-channel QMF banks
can be classified into a number of different approaches.   One of
the approaches consists in  formulating the design problem as a
constrained optimization problem.   The  resulting system  can be
made to exhibit close to PR behavior,  while simultaneously
achieving linear phase if desired.   Another point in its favor is
a self-contained design algorithm as will be shown in this paper.
Finally, it permits  flexibility in the design procedure so as to
readily permit several practical extensions.  These are (a) the
inclusion of frequency-weighted stopband energy criteria [3], and
(b) the inclusion of finite word-length constraints. The latter is
stressed in the paper.  We have successfully used our filters to
applications such as image coding and analysis [5],[6]; here, their
use in wavelet-series analysis of oceanographic data is
demonstrated.

The organization of the paper is as follows.  Section II discusses
the QMF design problem in the framework of a two-channel
filter-bank.  Sections III and V describe the formulation of the
nonlinear-phase and the linear-phase QMF design problems.  In
section IV an optimization algorithm is given; one of its merits
is that it is self contained and does not rely on commercial
optimization routines.  Section VI indicates extensions alluded to
earlier, focusing primarily on finite word-length constraints. In

Section VII the application to multi-scale wavelet-series analysis
of oceanographic data is discussed. 

II.  QMF FILTERBANK

Consider the two-channel QMF bank of Fig. 1, where all filters
are assumed to be FIR, each with N taps.  The reconstructed
signal is  readily shown to be 

The first term represents the desired time-invariant response,
while the second term involving X(-z), is the aliasing term.  The
latter  can  be  canceled by enforcing the relation H (-z)G (z) +0 0

H (-z)G (z) = 0.  In what follows, we develop expressions for 1  1

the  reconstruction-ripple and stopband energies for this
filterbank.

III.  FORMULATION OF  NONLINEAR-PHASE
QMF DESIGN PROBLEM

The discussion in this section is after [7].  For a QMF with an
arbitrary number of taps N, we use the Smith-Barnwell QMF
structure [8] with

Note that we are
taking the low-pass synthesis filter to be the prototype filter.
Assume that the analysis filters are known, while the synthesis
filters are unknown.  Then
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where g(n) are unknown filter weights, and �(n) denotes the
values of these same filter tap coefficients obtained from the last
iteration.  It can then be shown that the reconstruction ripple
energy is

The matrix A is given by

where

with u(") denoting the unit step sequence.  Further,

Example: Consider the simple case where N=4, and � = [ 0.1
0.5   0.5   0.7 ].  Then

On the other hand, the stopband energy can be computed as 

wh
ere the entries of the matrix F are 

Note that both matrices A and F are  N × N dimensional.

IV.  OPTIMIZATION ALGORITHM

The design problem can now be cast as an  optimization
problem.  Minimize

subject to g g =1.  Here, � is a stopband energy weightingT

parameter.   The solution to above optimization problem is the

eigenvector of A+�F  corresponding to the minimum eigenvalue
�  [2].  An iterative procedure (the Jain-Crochiere algorithmmin

[2],[7]) is given in Appendix A.

Att (dB): attenuation at the first sidelobe in
the stopband 
r (dB):  maximum reconstruction ripple
df:  Transition bandwidth = f - fAT 3dB

An example design [7] for N=8 is shown in Fig. 2.  Note that
Att=48 dB, r=0.00004 dB.

      Fig. 2   An 8-tap QMF design.  Note that Att=48 dB,
                and reconstruction ripple = 0.00004 dB.

V.  SIMPLIFICATION FOR LINEAR PHASE DESIGN

For the linear phase case, the complexity can be reduced. We
will assume that the number of taps is even, i.e., N=2M where M
is an integer.  The structure used is the Croisier, Esteban, and
Galand  structure:

w h e r e
H(z), the prototype filter, is the  low-pass analysis filter and is
symmetric.  Then it be shown that the ripple energy is given by

where w is the packed even-indexed part
of  h = [ h(0), ..., h(N-1) ]; i.e.,

The matrix A is given by [2]

where
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On the other hand, the stopband energy is given by

where the i,k entry of F  is^

The vector v denotes the first half of the vector h, i.e.,

and is related to
w through a suitable permutation matrix (recall that h is
symmetric), as are also the matrices F  and F.^

Note that both matrices A and F are now (N/2) × (N/2)
dimensional.  The optimization problem essentially remains the
same as for the nonlinear-phase filter design in Section IV,
except that the unknown vector is now w which is N/2
dimensional. The computational complexity is accordingly
reduced.  Indeed, we now minimize

subject to the constraint 2w  w =1.T

VI.  EXTENSIONS

We have already described the extension to frequency-weighted
criteria in [3].  Here, we discuss the extension of the technique
to include finite word-length constraints.  These constraints are
readily incorporated by including a quantization step in the
feedback loop of the algorithm.  This is shown in Fig. 3 by the
shadowed box (see also Appendix A).  As a practical matter,

however, the quantization constraint is imposed gradually, i.e., as
the iterations increase, the number of quantization bits used (in
the shadowed box) is decreased toward the target number of bits.

Design Examples

Consider the design of an 8-tap linear phase QMF filter H(z).
The following parameters are used: f  = 0.35, � = 1.0. Givensb

below are the resulting filter coefficients for various number of
bits.  Such small number of bits are useful in video and other
high-speed applications.

Bits h0*
1024

h1*
1024

h2*
1024

h3*
1024

  r
 dB 

Att
 dB

4 0 64 704 - 64 0.07   -

6 16 96 704 -96 0.05  32

8 12 100 712 -100 0.04  32

10 13 99 710 -101 0.03  33

As a second example, consider the design of a 12-tap linear
phase QMF filter H(z).  Again, the following parameters are
used: f  = 0.35, � = 1.0. Given below are the resulting filtersb

coefficients for 10 bits:

    1024*h(0:5) = [ -3    0     119    705    -115   19 ]

The passband ripple is less than 0.02 dB, and the stopband
attenuation is 47 dB.  Lower passband ripple can be achieved by
choosing a larger value of f , albeit at the expense of widersb

transition bandwidth.

We have demonstrated the design of quantized filters for the case
of the linear-phase QMFs.  A completely analogous approach can
be applied to the nonlinear-phase filters as well.

VII.  WAVELET ANALYSIS OF OCEANOGRAPHIC
DATA

The data was collected from five stationary platforms in the
Pacific ocean.  The locations of these platforms form a diamond,
with three of them located on the equator with a 100 km spacing,
and the remaining two are located 100 km north and south of the
center one.  Each platform has sensors located at 27 different
depths, that are integer multiples of 10 m, i.e., 10 m, 20 m, 30
m, etc.  At each depth the east-west velocity, call it u(p,d,t) is
measured; likewise, the south-north velocity is measured, call it
v(p,d,t).  Here, p=1,2,3,4,5; d=10,20,...,270; and t is the time in
increments of 1 hour.  Each data record, with 9737 sample points
thus contains a little more than a year's history.

Using a tree-structured QMF filterbank  with 8-tap linear-phase
filters, wavelet analysis of the 27 x 5 x 2 = 270 data variables
was carried out.  For brevity, we show the results of analysis for
u(1, 30, :).  Fig. 4(a) shows five-level analysis.  In 
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(a) (b)

Fig.  4   Wavelet analysis of oceanographic data (from Pacific ocean).  (a) Five-level, 32 scale,
 wavelet coefficients, (b) original, approximant, and detail

Fig. 4(b), the top trace represents the original data.  In the middle
is shown the the approximation signal reconstructed from the
Level-5 (or 2 -th scale) wavelet coefficients signal through five5

stages of upsampling and filtering.  Finally, in the last trace of
Fig. 4(b) is shown the difference between the original signal and
the approximation signal, which may be called the detail.

CONCLUSIONS

We have presented a unified approach to the design of quadrature
mirror filters.  The approach is applicable to both linear and
nonlinear phase QMF filters.  Further, the formulation lends itself
to an eigenvalue-eigenvector problem, for which we have
developed a fast algorithm in the past.  Here, we have extended
the applicability of this design procedure to the case where the
coefficients have limited precision.  Such designs, with a small
number of bits, are useful in video and other high-speed
applications.  Work is currently underway to extend the design
technique to handle asymmetric designs; more specifically where
the number of taps used at the encoder is larger than the number
of taps at the decoder.
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APPENDIX A

Jain-Crochiere Algorithm:
This appendix presents an iterative algorithm for filter tap weight
optimization.  Refer to Fig. 3.  The initializtion block consists of
(a) setting, or reading in: N, 3 , and �, (b) calculating thesb

matrix F as discussed in Section V, and (c ) initializing �.   The
main computation block performs the following calculations for
finding the eigenvector of R corresponding to the minimum
eigenvalue:
1.  � is initialized to �  = x x0 0 0

T

2.  z = ( R - �  I ) x    (i is the current iteration index) i i i

3.  d  = z  x    and c  = z zi i i i i i
T T

4.  s  = �  -  ( z R z ) /ci i i i i
T 

    � = [- s  -  (s  + 4 c  +4 d s ) ] / [2 (c  + d  s )]i i i i i i i i i
 2  1/2

5.  x  =  x  + frac*�  z where frac is a suitablei+1 i i i

    rate control parameter, controlled from the main loop
6.  x  = x  / || x  || and �  = x  R x   i+1 i+1 i+1 i+1 i+1 i+1

T
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