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ABSTRACT

Transform/subband representations form a basic building
block for many signal processing algorithms and applica-
tions. Most of the e�ort has focused on developing repre-
sentations for in�nite-length signals, with simple extensions
to �nite-length 1-D and rectangular support 2-D signals.
However, many signals may have arbitrary length or arbi-
trarily shaped (AS) regions of support (ROS). We present
a novel framework for creating critically sampled perfect
reconstruction transform/subband representations for AS
signals. Our method selects an appropriate subset of vec-
tors from an (easily obtained) basis for a larger (superset)
signal space, in order to form a basis for the AS signal.
In particular, we have developed a number of promising
wavelet representations for arbitrary-length 1-D signals and
AS 2-D/M -D signals that provide high performance with
low complexity.

1. INTRODUCTION

Many applications today and in the near future will entail
e�cient processing of multi-dimensional (M -D) signals with
arbitrarily shaped (non-rectangular) regions of support. For
example, most high-level representations of images or video
incorporate 2-D or 3-D models which decompose the scene
into arbitrarily shaped objects or regions. Medical imag-
ing often results in 2-D or 3-D imagery where the relevant
information is localized over an arbitrarily shaped region.
Furthermore, many areas of scienti�c research involve prob-
lems de�ned over arbitrarily shaped domains.

In this paper we propose a novel approach for creat-
ing e�cient transform/subband representations for discrete
1-D, 2-D, and general M -D signals de�ned over arbitrar-
ily shaped regions of support. For brevity, we will refer to
these signals as AS signals. Speci�cally, we assume that the
ROS of the signal is given, and the goal is to represent the
signal's amplitude over the ROS. We desire a representa-
tion that can achieve the same high performance with low
complexity for AS signals as is currently achieved for sig-
nals with convenient supports. Note that complexity is of
prime importance, since even a small M -D signal can make
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most algorithms impractical, e.g. a 3-D AS signal of only
30-sample \diameter" may require the processing of up to
27,000 samples.

This paper begins with a brief overview of the previous
research in representing AS signals, and then presents our
general approach. We then focus on creating a wavelet-
type representation, which appears to be a natural approach
for many AS problems. We present two di�erent wavelet
representations and discuss the relative merits of each.

2. PREVIOUS RESEARCH

Considerable research has focused on representing �nite-
length 1-D signals and a number of highly successful and
practical 1-D methods exist. However these methods do
not appear applicable for representingM -D AS signals. For
example, the symmetric extension method provides a very
simple and successful approach for producing a critically
sampled (CS) perfect reconstruction (PR) representation
for 1-D signals using linear phase �lters. However, deter-
mining an extrapolation for an M -D AS signal that enables
CS and PR appears to be a much more complex problem.

Boundary �lter construction is an elegant approach for
creating a CS PR representation with nice boundary �lters
for processing 1-D signals [1, 2]. An important practical fea-
ture for 1-D is that since there are a very small number of
boundary cases, the complex boundary �lter construction
can be performed once for a given �lter set and stored for
repeated application. However, M -D signals have a huge
number of possible boundary scenarios, and it appears im-
practical to precompute and store the boundary �lters for
all the possible cases. Overall, boundary �lter construc-
tion is complex and cumbersome (indexing, etc.), thereby
severely limiting its application to M -D problems. Similar
di�culties also exist for [3].

A CS PR representation can easily be constructed for an
M -D AS signal by applying 1-D schemes along each of the
dimensions, e.g. a 2-D signal can be processed by applying
an invertible transform along all the rows and subsequently
along all the columns [4, 5]. These approaches require very
low complexity, however they possess certain undesirable
properties. For example, while they process the rows and
columns separately, the transform is not separable, i.e. the
result depends on whether the rows or columns are pro-
cessed �rst.



A natural approach for representing M -D AS signals is
to use a transform/subband scheme de�ned over a circum-
scribing square [6, 7]. This guarantees PR and facilitates
the use of the separable/fast properties of the underlying
superset basis. This is a promising approach, however its
overcomplete nature makes processing more complex.

3. OVERVIEW OF GENERAL APPROACH

The goal of this work is to construct a CS PR representation
for signals with arbitrarily shaped regions of support. This
is equivalent to determining a basis for the signal space de-
�ned by the ROS of the signal. Our approach is motivated
by the idea that we can easily create representations de�ned
over convenient supports, e.g. the entire line in 1-D or the
entire plane in 2-D. Therefore, we employ our knowledge
and ability in representing signals of convenient support,
in order to produce a practical and successful method for
representing signals of arbitrarily shaped supports. To illus-
trate this approach, consider a 2-D AS signal and an initial
transform/subband representation de�ned over a support
that contains the given signal. The initial representation
may be de�ned over the entire 2-D plane, or over a rectan-
gular support that circumscribes the given signal. The vec-
tors in this initial representation correspond to a basis over
the space that they are de�ned. In addition to spanning
their conveniently de�ned space, they also span the signal
space given by the AS signal. Therefore, we would like to
select an appropriate subset of these vectors which will pro-

vide a basis for the AS signal. The general approach can
therefore be summarized as follows:

1. Begin with a basis de�ned over a convenient support
which contains the signal's ROS.

2. Select an appropriate subset of the vectors to provide
a basis for the desired signal space.

3. Compute the coe�cients for the selected vectors.

Beginning with a basis over a circumscribing space guar-
antees that there exists (at least one) basis for the desired
signal space | typically there are many subsets of vectors
that lead to a basis. In addition, the chosen basis for the
AS signal can inherit some of the important approximation
and computational properties of the basis over the larger
space.

The proposed approach provides a signi�cant amount of
exibility, and there are many possible directions for investi-
gation: initial transform/subband representation (e.g. DFT,
DCT, LOT, wavelet); circumscribing ROS over which the
initial representation is de�ned, as well as placement of the
signal within the ROS; subset of vectors (which basis) to
choose for the AS signal. Furthermore, the selected vectors
may be used for \analyzing" or \synthesizing" the signal. In
e�ect, we are creating a biorthogonal representation and we
are explicitly choosing either the analysis or the synthesis.

The desired representation (basis) for the AS signal
should be chosen so that it provides high performance and
low complexity. The speci�cs of high performance will vary
with the individual application. For example, it often corre-
sponds to good approximation capability, i.e. the signals of
interest can be accurately approximated with only a small
fraction of the total number of coe�cients. Low complexity

corresponds to the selection of vectors being a simple func-
tion of the signal's ROS, and the coe�cient computation
being relatively fast.

4. WAVELET-TYPE REPRESENTATIONS

A wavelet-type representation appears to be a natural choice
for AS signals. Wavelet representations achieve high perfor-
mance in representing images, and therefore appear promis-
ing for representing the arbitrarily shaped objects or regions
in an image. Wavelets with local support will typically re-
sult in only a small fraction of the vectors interacting with
the boundary; most of the vectors will be completely inside
or completely outside the signal's ROS, thereby simplify-
ing the following steps. In addition, the ROS of the initial
wavelet representation does not matter | it can be de�ned
over the entire 2-D plane or only over a rectangular region,
in both cases providing the same set of vectors (unlike a
global DCT). These properties greatly simplify the analysis
and computational issues.

The remainder of this paper will focus on 1-D and 2-
D AS signals, Daubechies orthogonal FIR (closest to lin-
ear phase) �lters and their use as synthesis vectors. The
general case can be found in [8]. Consider the problem of
determining a single-level wavelet decomposition of an AS
signal. Once a single level can be processed, the approach
can be recursively applied to any of the subbands to create
a wavelet or wavelet packet type decomposition. Assume
that an AS signal in the 2-D plane and an initial wavelet
transform de�ned over the entire 2-D plane are given. The
wavelet vectors can be split into three groups: (1) the in-

terior vectors which lie entirely inside the signal's ROS, (2)
the boundary vectors which lie partially inside and partially
outside the ROS, and (3) the exterior vectors which lie en-
tirely outside the ROS. The three subspaces spanned by
these groups of vectors will be referred to as Vint, Vbnd,
and Vext respectively. Let VAS�sig be the signal space and
Vbnd�trunc be the subspace spanned by the boundary vec-
tors when truncated to the AS ROS:

V2D�plane = Vint � Vbnd � Vext

VAS�sig = Vint � Vbnd�trunc :

Determining a basis for VAS�sig is equivalent to determin-
ing a basis for each Vint and Vbnd�trunc | thus the problem
can be decomposed into two lower-dimensional, indepen-
dent problems. All the interior vectors are selected, other-
wise there will be a \hole" in the representation. An appro-
priate subset of boundary vectors are also selected to span
Vbnd�trunc. Speci�cally, only the portion of each boundary
vector within the ROS is relevant. Since the original �lters
are orthogonal, Vint ? Vbnd�trunc, however the truncated
boundary vectors are not mutually orthogonal. The prob-
lem reduces to selecting a set of boundary vectors that pro-
vide a basis for Vbnd�trunc. Note that while this is similar to
[1, 2] where a basis for Vbnd�trunc is explicitly constructed,
we simply select or discard each boundary vector.

4.1. Selecting the Vectors/Choosing a Basis

Given a 2-D AS signal and an initial wavelet representation
de�ned over the entire 2-D plane, we select a subset of the



vectors from the initial representation that provide a basis
for the AS signal. There are typically many possible subsets
of vectors that lead to a basis, where some choices are better
in a certain sense than others. We will examine two possi-
ble selection schemes. The �rst is primarily of theoretical
interest, while the second may be more successful in practi-
cal applications. Because of the limited space, we will focus
on the basic concepts and limitations of each approach, and
present some brief examples of their application in Section
5. Further details and analysis may be found in [8].

Polynomial Accuracy Property A natural criterion for
the selection is to preserve the important wavelet property
of representing polynomials. An L-tap Daubechies HP �l-
ter has p = L

2
vanishing moments. Any polynomial of order

less than p is exactly represented by the lowpass subband,
i.e. all the energy (information) is contained in the lowpass
subband, and all the bandpass and highpass subbands are
zero. In addition, the lowpass subband will also be a poly-
nomial of similar order. The LP vectors exactly reproduce
polynomial signals. To retain this desirable property we re-
tain all the LP vectors that overlap the signal's ROS. The
resulting selection algorithm therefore selects (1) all the in-
terior vectors (LP and HP), (2) all the boundary LP vectors,
and (3) an appropriate number of boundary HP vectors to
complete the basis. In the particular case of a contiguous
arbitrary-length 1-D signal, selecting all the interior vectors
and only the boundary LP vectors is su�cient to guaran-
tee a basis. For M -D AS signals we also select additional
boundary vectors.

An interesting point is that the existing wavelet meth-
ods for arbitrary-length 1-D signals do not fully preserve the
polynomial representation properties. For example, while
the preconditioned representation in [1] compacts all the
polynomial information into the lowpass subband, the sub-
band is not a polynomial of similar order, i.e. there are some
\wiggles" at each boundary. However, the current proposal
does fully preserve these properties, e.g. a constant signal
will lead to a constant lowpass subband with all other sub-
bands equal to zero [8]. Therefore, a smooth signal will
have a smooth representation, and a smooth representation
will correspond to a smooth signal. These properties are
bene�cial for interpretation and compression.

This proposed selection has two disadvantages. First,
the representation becomes increasingly ill-conditioned with
longer �lter lengths. Intuitively, this occurs because some
of the selected boundary vectors correspond to very short
truncated \tails" of the original LP boundary vectors. A
small change in the signal amplitude near the boundary can
therefore produce a large change in the coe�cient ampli-
tudes, i.e. similar signals can have vastly di�erent coe�cient
amplitudes. This may prohibit its usefulness in all but very
special applications. A second disadvantage is that the set
of possible ROS's that can be represented is severely lim-
ited. For example, in 1-D the signal must have a minimum
length of (L� 1); otherwise the number of lowpass vectors
that overlap the signal and are selected exceed the number
of samples in the signal. A similar concept of minimum
length exists in 2-D: any features on the boundary with a
horizontal or vertical size of less than (L� 1) (e.g. a bump
or divet) will result in too many LP boundary vectors. It is
natural to �lter a signal with a �lter that is shorter than the

signal length, therefore the constraint in 1-D is reasonable.
However, the constraint in M -D places a severe restriction
on the possible ROS's that may be processed. Therefore,
while the polynomial accuracy property is theoretically ap-
pealing, the disadvantages suggest that this selection may
have very limited practical usefulness.

High Performance and General ROS's Polynomial ac-
curacy is theoretically appealing, however its usefulness for
general signal/image processing is less evident. The ability
to accurately approximate a constant signal (no DC-leakage
into HP subbands) is very important, but higher order ac-
curacy may be of limited value. More important properties
include good conditioning, good frequency responses for the
boundary �lters, and exibility in the possible ROS's that
may be processed. These properties can be readily achieved
by selecting the vector centered at each sample in the sig-

nal's ROS. For even-length vectors, the center can be taken
to be the largest of the two center taps, i.e. the LP vector
will be centered at one sample, and the HP at the other.

For each sample in the signal's ROS, we select the corre-
sponding vector centered at that sample. In this manner we
are guaranteed to select the correct total (global) number
of vectors required (equal to the total number of samples
in the ROS). In general, it is relatively di�cult to deter-
mine the number of vectors required in any local boundary
area. However, this approach provides a reasonable esti-
mate of the number of vectors required over any local area.
In fact, for an appropriate choice of the initial vectors, all
the selected vectors are linearly independent | providing
a basis over the AS ROS. This approach works for a large
class of �lters: Daubechies 4-16 tap, Smith and Barnwell's
orthogonal �lters, and some biorthogonal �lters. However,
it does not work for all �lters, e.g. Daubechies 2-tap (Haar)
and some biorthogonal �lters. In addition, since this ap-
proach selects centered vectors which have large overlap
with the ROS, the resulting representation is much better
conditioned and the \analysis" vectors have much better
frequency responses than the previous scheme, where the
selected vectors often are very small tails. Furthermore,
there is considerably more freedom in the possible ROS's
that may be represented: the ROS can have any shape (no
restrictions on its curvature as in the previous scheme), it
can contain holes, it can be disconnected, and it can include
isolated samples. While we have not shown that we have
complete freedom in the ROS, empirical evidence suggests
that this is plausible.

This approach provides a number of advantages: a very
simple selection based on the ROS, a large class of �lters
to choose from, good conditioning and frequency responses,
and potentially complete freedom in the possible ROS's.
Therefore it appears to be very promising as a general pur-
pose wavelet-type representation for AS signals.

4.2. Computational Issues

Some applications, such as compression, require separate
analysis and synthesis stages. The complexity of the analy-
sis depends on: (1) determining the appropriate vectors to
select based on the ROS, and (2) computing the coe�cient
amplitudes of the selected vectors. The selection process
can be extremely simple, as discussed in the previous sec-



tion. The coe�cients can be computed in a variety of ways:
(1) set up and solve the linear system, (2) construct the
dual vectors and compute their inner products with the sig-
nal, (3) use iterative methods which exploit the structured
initial basis, and (4) what may be referred to as the \peel-
away" method. (1) and (2) are typically too cumbersome
and complex for any large signal, while (3) requires a num-
ber of iterations and also is somewhat unsatisfying since
we never get the exact answer. The \peel-away" method
appears to be promising, especially for large ROS signals.

The \peel-away" method is easiest to visualize for an
arbitrary-length 1-D signal, and when only selecting the
LP boundary vectors. First, we compute the interior co-
e�cients in the conventional �lterbank manner. We then
reconstruct and subtract out the \interior" from the signal.
The residual is non-zero only around the boundaries and it
can be expressed using the selected boundary vectors. Since
the selected boundary vectors have staggered supports, we
can compute their amplitudes sequentially. For instance,
the amplitude for the innermost boundary vector (longest
overlap with the signal) can be computed independent of
the other boundary vectors. In this way, we solve for the
amplitude of each boundary vector and then subtract or
\peel-away" its contribution from the residual. Then we
continue with the next boundary vector. In essence there
is a simple triangular linear system to be solved. In the
general case when both LP and HP boundary vectors are
selected, the supports are no longer staggered, however the
problem can still be decomposed into a number of very low
complexity problems. For example, in 2-D, every 2� 2 set
of samples in the boundary residual are represented by one
to four boundary vectors | resulting in a low-dimensional
linear system of equations to solve. In addition, since only
a small number of di�erent linear systems arise, all the
inverses can be precomputed and stored. In essence, the
\peel-away" method solves for the interior and then goes
around the boundary, spiraling or peeling-away outward.

The synthesis stage determines which coe�cients were
selected (performs the selection based on the ROS) and
reconstructs the signal from the coe�cients. The selection
is very simple, and the inverse transform is a simple inverse
block transform possibly followed by cropping to the original
ROS | thus decoding an AS signal is almost as easy as
decoding a signal with rectangular support.

5. EXAMPLES AND SUMMARY

A two-level CS PR wavelet decomposition based on the sec-
ond selection criterion is illustrated in Figure 1 for two AS
signals. The top signal contains 7632 pixels, while the bot-
tom one (with a very complex ROS) contains 3143 pixels.
As a simple comparison, a conventional two-level wavelet
transform over a circumscribing square would have 10200
and 7803 nonzero coe�cients, respectively, for the two AS
signals. This results in a 34% and 148% increase in the
number of coe�cients in the representations as compared
to pixels in the original signals.

We have developed a general approach for creating crit-
ically sampled perfect reconstruction representations; this
approach is applicable to 1-D, 2-D, and general M -D AS
problems, and it provides considerable freedom in the de-

sign. The wavelet-based representation appears very promis-
ing, and may potentially provide complete freedom in the
ROS. This last feature is very important since it may often
be di�cult or impractical to impose constraints on the size,
shape, or the number of samples in the ROS of AS M -D
signals.

Figure 1: The wavelet representations of two 2-D AS signals
using Daubechies 8-tap �lters. To aid in interpretation, the
lowpass subband has been scaled down by a factor of 2 and
the other subbands have been o�set to gray.
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