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ABSTRACT

The windowed Fourier transform of a time signal is
considered, as well as a way to reconstruct the signal
from a su�ciently densely sampled version of its win-
dowed Fourier transform using a Gabor representation;
followingGabor, sampling occurs on a two-dimensional
time-frequency lattice with equidistant time intervals
and equidistant frequency intervals. In the limit of in-
�nitely dense sampling, the optimum synthesis window
(which appears in Gabor's reconstruction formula) be-
comes similar to the analysis window (which is used in
the windowed Fourier transform). It is shown that this
similarity can already be reached for a rather small de-
gree of oversampling, if the sampling distances in the
time and frequency directions are properly chosen. A
procedure is presented with which the optimum ratio of
the sampling intervals can be determined. The theory
is elucidated by �nding the optimum ratio in the cases
of a Gaussian and an exponential analysis window.

1. INTRODUCTION

In recent years, the sampled version of the windowed
Fourier transform of an arbitrary signal has received
considerable interest. The sampling values that result
from this windowed Fourier transform (with a given
analysis window) can be used to reconstruct the signal

by means of the Gabor expansion [1] (with a proper
synthesis window, to be determined from the analysis
window). In sampling the windowed Fourier transform,
we have some freedom in choosing the sampling dis-
tances in the time and the frequency direction, as long
as the density of the sampling lattice, which is deter-
mined by the product of the two sampling distances, is
su�ciently high. But the ratio between the two sam-
pling distances appears to be important, as well. In-
deed, although the shape of the optimum synthesis win-
dow will always become identical to that of the analysis
window for a su�ciently small value of the product of
the two sampling distances { i.e. a very large degree
of oversampling { this limit will be reached for a much

smaller degree of oversampling if the ratio of the sam-
pling distances is properly chosen. The present paper
presents a procedure with which the optimum value of
this ratio can be determined.

2. WINDOWED FOURIER TRANSFORM

Let the windowed Fourier transform S'(t; !) of a signal
'(t) be de�ned as

S'(t; !) =

Z
'(t0)w�(t0 � t)e�j!t0dt0; (1)

where w(t) is the window function. (All integrations
and summations in this paper extend from�1 to +1.)
We note that the windowed Fourier transform can be
considered as the Fourier transform of the product of
the signal '(t) and a shifted and complex conjugated
version of the analysis window w(t). The window func-
tion may be chosen rather arbitrarily; mostly it will
be a function that is more or less concentrated around
the origin. In this paper we will throughout use the
Gaussian window function

w(t) = 2
1

4 e��(t=T )2 (2)

and the exponential window function

w(t) =
p
ae�ajtj=T with a > 0 (3)

as examples. Note that we have normalized these func-
tions such that their L2 norms

R jw(t)j2dt equal T .
The signal '(t) can be reconstructed from its win-

dowed Fourier transform by an inverse Fourier trans-
formation, of course. A di�erent and more interesting
way to reconstruct the signal from its windowed Fourier
transform is by means of the inversion formula

'(t0)

Z
jw(t)j2dt = 1

2�

ZZ
S'(t; !)w(t

0 � t)ej!t
0

dtd!;

(4)
this relationship can easily be proved by substituting
from the de�nition (1) of the windowed Fourier trans-
form. However, in order to reconstruct the signal we



need not know the entire windowed Fourier transform;
it su�ces to know its values at the points of the rectan-
gular lattice (t = m�T; ! = k�
) in the time-frequency
domain, where 
T = 2� and �� � 1, and where m and
k take all integer values. Note that the rectangular
cells of this lattice occupy an area of 2��� in the time-
frequency domain. With the sampling values de�ned
as

amk = S'(m�T; k�
); (5)

the signal '(t) can then be reconstructed by consider-
ing these sampling values as the coe�cients in Gabor's

signal expansion, with a synthesis window g(t) that still
has to be determined; thus

'(t) =
X
m

X
k

amkg(t �m�T )ejk�
t: (6)

In the case of critical sampling (i.e., �� = 1), the
synthesis window g(t) is uniquely determined by the
analysis window w(t) [2, 3], whereas in the case of
oversampling (i.e., �� < 1), the synthesis window is
no longer unique. In the oversampled case, the syn-
thesis window is very often chosen such that it has
minimum L2 norm. This so-called optimum synthe-
sis window gopt(t) not only has minimumL2 norm, but
it also resembles best (in a minimum L2 norm sense,
again) the analysis window w(t). It is easy to see that
for in�nite oversampling (�T # 0; �
 # 0), Gabor's sig-
nal expansion (6) becomes equivalent to the inversion
formula (4), and the (optimum) synthesis window is
indeed proportional to the analysis window:

gopt(t)

Z
jw(t)j2dt ' �� w(t): (7)

As an illustration we have depicted in Fig. 1 the opti-
mum synthesis window gopt(t) that corresponds to the
Gaussian analysis window (2) for di�erent values of �
and � (with � = �); note that the resemblance be-
tween the synthesis and the analysis window increases
with increasing degree of oversampling. Several ways
are described in the literature to determine the opti-
mum synthesis window [4, 5, 6, 7, 8].

3. OPTIMUM SAMPLING LATTICE

The optimum synthesis window depends, of course, on
the choice of the sampling parameters � and �. In
Fig. 1 these sampling parameters were chosen identical
(� = �), since this choice yields the best result in the
case of a Gaussian analysis window, as we will show. As
an illustration of non-identical sampling parameters we
have depicted in Fig. 2 the optimum synthesis window
that corresponds to the Gaussian analysis window (2)
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Figure 1: A Gaussian analysis window w(t) (dashed
line) and its corresponding optimum synthesis window
gopt(t) (solid line) for di�erent values of oversampling:

(a) � = � =
p
6=7, (b) � = � =

p
2=3, and (c) � =

� =
p
2=5.
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Figure 2: A Gaussian analysis window w(t) (dashed
line) and its corresponding optimum synthesis window
gopt(t) (solid line) in the case of oversampling by a fac-
tor 3, for di�erent values of � and �: (a) � = 1=3,
� = 1, (b) � = � =

p
1=3, and (c) � = 1, � = 1=3.

for several values of �, while maintaining the relation
�� = 1=3. It is the aim of this paper to derive the
optimum values of the sampling parameters � and �

for a given degree of oversampling 1=��.
To �nd a procedure for determining the optimum

parameter values we proceed as follows. Let us express
the analysis window w(t) by means of its Gabor expan-
sion [cf. Eq. (6)]:

w(t) =
X
m

X
k

cmkg(t�m�T )ejk�
t: (8)

The Gabor coe�cients cmk follow as the sampling val-
ues of the windowed Fourier transform Sw(t; !):

cmk = Sw(m�T; k�
)

=

Z
w(t0)w�(t0 �m�T )e�jk�
t0dt0: (9)

If the degree of oversampling 1=�� is su�ciently high,
the optimum synthesis window gopt(t) resembles the
analysis window w(t) [see Eq. (7)], and the Gabor ex-
pansion (8) takes the form

w(t) ' ��

c00

X
m

X
k

cmkw(t�m�T )ejk�
t: (10)

From Eq. (10) it is obvious that we would like the
array of Gabor coe�cients cmk to be as concentrated
around the origin as possible. Optimal choices for the
sampling parameters � and � may now be found by
considering the widths 2dt and 2d! of the function
Sw(t; !) in the t-direction and the !-direction, respec-
tively, and by taking the ratio of the sampling distance
�T in the time direction and the sampling distance �

in the frequency direction equal to dt=d!. As measures
of d2t and d2! we might choose, for instance, the nor-
malized second-order moments of the one-dimensional
functions jSw(t; 0)j2 and jSw(0; !)j2, respectively:

d2
t =

R
t2jSw(t; 0)j2dtR jSw(t; 0)j2dt and d2

! =

R
!2jSw(0; !)j2d!R jSw(0; !)j2d! :

(11)
Note that Sw(0; !) is in fact the Fourier transform of
the function jw(t)j2, and that Sw(t; 0) is in fact the
inverse Fourier transform of the squared absolute value
of the Fourier transform of w(t).

As an example let us determine the optimum values
of the ratio �=� for the Gaussian analysis window (2)
and for the exponential analysis window (3), for which
windows the function Sw(t; !) takes the form

Sw(t; !) e
j 1
2
!t = T e�1

2
�[(t=T )2 + (!=
)2] (12)

and

Sw(t; !) e
j 1
2
!t = T

1

1 + (�=a)2(!=
)2
e�ajt=T j



�
�
a

���� tT
���� sin[�(!=
)(t=T )]�(!=
)(t=T )

+ cos[�(!=
)(t=T )]

�
;

(13)
respectively. In the case of the Gaussian analysis win-
dow, the function jSw(t; !)j2 is symmetrical in t=T and
!=
. As a consequence, we expect that the best choice
for the sampling parameters is � = �, which would be
in accordance with the result that we showed already
in Fig. 2b. For the widths 2dt and 2d! we �nd in-
deed 2dt=T = 2d!=
 = 2=

p
� ' 1:13, and the ratio

�=� = (2dt=T )=(2d!=
) takes the value 1.
In the case of the exponential analysis window (or

any other window function whose Fourier transform
has a shape that is di�erent from the shape of the
window function itself), we do not have such a nice
symmetry in t=T and !=
. Nevertheless, we can still
determine the best choices for the sampling parame-
ters � and �. For the exponential window (3) we �nd
2dt=T = 2

p
7=5=a and 2d!=
 = 2a=�; hence, the ratio

�=� = (2dt=T )=(2d!=
) should take the value �=� =
�
p
7=5=a2. For the special value a =

p
�(7=5)1=4 '

1:928, the ratio �=� takes the value 1. As an illustra-
tion we have depicted in Fig. 3 the optimum synthesis
window that corresponds to the exponential window
(3) with a =

p
�(7=5)1=4 for several values of �, while

maintaining the relation �� = 1=9.
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Figure 3: An exponential analysis windoww(t) (dashed
line) and its corresponding optimum synthesis window
gopt(t) (solid line) in the case of oversampling by a fac-
tor 9, for di�erent values of � and �: (a) � = 1=9,
� = 1, (b) � = � = 1=3, and (c) � = 1, � = 1=9.


