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ABSTRACT

This paper is devoted to the theoretical analysis of the
�tness function in genetic algorithms using wavelet packet
(WP) transforms. More speci�cally, WP transforms are
used to calculate the average �tness value of a schema.
Based on this one can decide whether a certain function
is easy or hard for a genetic algorithm. The result is
an extension of Bethke's work who discovered an e�cient
method for calculating schema average �tness values using
the Walsh transform.

1. INTRODUCTION

Wavelet packet (WP) transforms (or, equivalently, tree-
structured transforms) which are powerful extensions of
wavelets and multiresolution analysis, have recently been
subjected to a wide interest in the signal processing commu-
nity. Based on tree-structure �lter banks WPs o�er a rich
family of orthonormal bases, from which one can choose the
"best" (under a certain criterion, like entropy-based) basis
[8].
Genetic algorithms (GA) are search algorithms based on

the mechanics of natural selection and natural genetics. A
simple GA is composed of three operators: reproduction,
crossover and mutation [4]. An important problem of GA
is to analyze how easy or hard will an objective (whence
also �tness) function be for the GA.
As a search algorithm one can use GA for the selection of

the "best" basis (under a certain criterion) among all WP
bases. Such kind of problems occur e.g. in image coding
applications [9].
In this matter the following question arise: what kind of

role the WP transforms play in the analysis of GA?
First attempt in the application of orthogonal transforms

to the analysis of genetic algorithms was made by Bethke
[3], who discovered an e�cient way for calculating schema
average �tness values using the Walsh transform. The
building blocks of GAs, which are combined to form op-
tima or near optima, are short and low-order schemata with
above-average �tness values. The comparison of the �tness
averages written in terms of the Walsh transform coe�-
cients and in terms of the identity transform coe�cients
(the canonical basis) showed that [5]:
- for Walsh transform the low-order schemata are speci-

�ed with a short sum and the high-order schema are speci-
�ed with a long sum,
- for identity transform the situation is opposite.
This makes the Walsh transform e�cient for GA. But

the Walsh transform is only one from the class of the Haar-
wavelet packets.
How about other transforms, especially those based on

rectangular basis functions?
In [7], an attempt was made to use the Haar transform

with the GA's. It was based on the fact that in the case

of Haar transform there is a reduction of the computation
time compared to Walsh transform. Nevertheless, no gen-
eral formula for schema average �tness in Haar basis, and
no general analysis of the complexity (as the number of
nonzero terms in the summation for schema average �tness)
were presented in [7].
The main goal of this paper is to investigate the applica-

tion of wavelet packet transforms to the analysis of genetic
algorithms. We derive an analytical expression for GA av-
erage H-�tness matrix and average H-�tness cost vector
(which are quantative measures of complexity of calculating
schema average �tness values) corresponding to any basis
H from the library of WP transforms.

2. THE SCHEMA THEOREM AND THE
WALSH-SCHEMA TRANSFORM

2.1. The schema theorem

First we recall some concepts of GA, the fundamental the-
orem of GA - a schema theorem, and the Walsh-schema
transform [3], [5] - [6].
We assume that GA processes n-bit strings, x =

(xn�1xn�2:::x0); xi 2 f0; 1g corresponding to the decimal

number x =
P

n�1

i=0
xi2

i:

A schema is a similarity subset containing strings with
the de�ned similarity at some number of positions. For
example, the subset f(001); (011)g is the schema (0 � 1);
where � is the "don't care" character. Thus, a schema is

s = (sn�1sn�2:::s0); si 2 f0; 1; �g:
If we represent an n-bit string as a node of the binary

n-cube, a schema is the covering of corresponding nodes by
intervals. There are totally 3n di�erent schemata.
The order o(s) of a schema s is the number of �xed po-

sitions of similarity in the subset (the number of strings in

this subset is 2n�o(s)). For example, o(0 � 1) = 2:
The length �(s) of a schema is the distance between the

outermost de�ning positions of a schema. For example,
�(0 � 1) = 2; �(00�) = 1:
For a given GA problem we have a real-valued �tness

function f(g(x)); where g(x) are decision variables. Ac-
cording to the schema theorem, (see,[4]) under reproduc-
tion, simple crossover, and mutation, the expected number
of representatives m of a particular schema s is at least

m(s; t + 1) �m(s; t)
~f(s)

f
[1� pc

�(s)

n� 1
� pmo(s)]; (1)

where ~f(s) is the schema average �tness of the representa-
tives of s in the current population, de�ned by

~f(s) =
1

jsj
X
x2s

f(x); (2)



where jsj is the number of strings of the subset s, f is
the average �tness in the population, pc and pm are the
crossover and the mutation probabilities, respectively, �(s)
is the length, and o(s) is the order of the schema. This theo-
rem says that a schema grows when it is short, of low-order,
and has above-average �tness [5].

2.2. Walsh-schema transform

The Walsh functions, forming an orthogonal set of func-
tions, are de�ned analytically by

wi(y) =

nY
i=1

y
ji

i
; yi 2 f�1; 1g; (3)

where ji is the ith bit in the binary representation of j,
0 � j � 2n � 1:
The schema average �tness (in the Walsh transform do-

main) can be written as [3], [5]:

~f(s) =
X
j2J(s)

cjwj(�(s)); J(s) = fj : (9i) : (s � si(j))g;

(4)
where

�(si) =
n
0; if si = 0; �
1; is si = 1;

cj =
1

2n

2n�1X
x=0

f(x)wj(x):

The computation of (4) is called theWalsh-schema trans-
form [5]. Note that the low-order schemata are speci�ed
with a short sum and the high-order schemata are speci�ed
with a long sum. With the schema-theorem this shows why
the Walsh transform is e�ective for GA.

3. AVERAGE FITNESS TRANSFORM
MATRIX AND COST VECTOR

Let now f = [f(0); :::; f(2n � 1)]T be the vector form of

a �tness function, ~f = [ ~f(0); :::; ~f(3n � 1)]T be the vector
form of an average �tness function, Hn be any nonsingular
2n � 2n matrix, and

g = Hnf : (5)

We de�ne a 3n � 2n matrix An = A(Hn) (depending on
the matrix H) such that

~f = Ang: (6)

We call such matrix An = A(Hn) the average H-�tness
transform matrix, and the transform (6) the average H-
�tness transform.
It is easy to see that in the case Hn = In (identity matrix

of order 2n)

An = A(In) =

 
1 0
0 1
1 1

!
n
; (7)

where B
n is the nth Kronecker power of B.
Note that the matrix A(In) plays the same role as the

interval splicing matrix An (used for extracting all intervals
of the n-cube [1]) and, in fact, coincides with it.

Since ~f is independent of Hn we have from (6), (5) and
(7):

~f = A(Hn)Hnf = A(In)f =

 
1 0
0 1
1 1

!
n

f ;

therefore
A(Hn)Hn = A(In);

and

A(Hn) =

 
1 0
0 1
1 1

!
n
H
�1
n : (8)

For the comparison of simplicity of the representation
(6) for di�erent matrices Hn we introduce an average H-

�tness cost vector r = r(g) = [r(0); :::; r(2n � 1)]T ; where
r(�(s)) shows the average number of nonzero terms g(s) in
the representation (6), where

�(s) =
n
0; if s = 0; 1
1; if s = � (9)

The H-average �tness cost vector gives a quantative mea-
sure of complexity of calculating schema average �tness val-
ues.

4. RECTANGULAR WAVELET PACKETS
AND FITNESS AVERAGE MATRICES AND

COST VECTORS

4.1. Rectangular wavelet packets and �tness aver-
age matrices

The Haar wavelet packet of the Haar-like unitary transforms

H
(P )
n corresponds to the tree-structured �lter banks (P is

a binary tree) with the synthesis �lters pair (lowpass and
highpass) de�ned by (see eg. [8]):

G0(z) =
1p
2
(1 + z

�1); G1(z) =
1p
2
(1� z

�1): (10)

An arbitrary pruned tree structure P of the full binary tree
of depth n will give a family of Haar-like unitary bases

fH(P )
n g: The extreme cases are the following: If P is the

trivial tree (only the root) then H
(P )
n is the identity trans-

form, if P is an octave-band tree (iterating only on the

lowpass sections) then H
(P )
n is the Haar transform, and if

P is the full tree then H
(P )
n is the Walsh transform.

Below we will give an explicit formula for the average
�tness transform matrix corresponding to an arbitrary basis
from the Haar wavelet packet.
Let us �rst derive an analytic expression for the matrix

[H
(P )
n ]�1 (which is the inverse of the matrix H

(P )
n corre-

sponding to a pruned tree P of the full binary tree of depth
n).
For this aim we code each node at the kth (0 < k � n)

level of the tree P (the root is on the level 0 and not coded)
by a (0; 1)-vector of length k. Let some nonterminal node
be coded by the binary vector c: The descendants of this
node will have the following codes: c0 (the left one) and c1
(the right one). To the codes of all terminal nodes which
are not on the last, nth, level we add from the right the
"don't care" character �.
Let P have t terminal nodes with corresponding codes

fc(i)g; c(i) = (c
(i)
1 ; :::; c

(i)
n ); (11)

where c
(i)
j
2 f0; 1; �g; i = 1; :::; t:

Proposition 1. Let P be a pruned tree of the regular
tree of depth n and have t terminal nodes with their codes

given by (11). The inverse transform matrix [H
(P )
n ]�1 for

the Haar-like transform corresponding to the tree P will
have the following form:

[H(P )
n ]�1 = 2�

n
2

"
2
n1
2 In1 


� k1O
j=1

�
1
�1
��(c(1)

j
)
�

� � �



00 01

0 1*

Figure 1. A pruned binary tree with corresponding codes
of nodes

� � � 2
nt
2 Int 


� ktO
j=1

�
1
�1
�
�(c

(t)

j
)
�#

; (12)

where Ik is the identity matrix of order 2k, ni = n�o(c(i));
o(s) is the order of a schema s, �(c) is de�ned by (9),�

1
�1
�0

=
�
1
1

�
and

�
1
�1
�1

=
�

1
�1
�
:

Proof follows from the de�nition (10) of the Haar �lter
pair and the construction of tree codes.
As an example, the transform matrix corresponding to

the tree P shown in Fig. 1, is represented analytically by

[H(P )
n ]�1 =

1

2

�
In�2


�
1
1

�


�
1
1

�
In�2


�
1
�1
�


�
1
1

�
p
2In�1 


�
1
�1
��

:

Proposition 2. Let P be a binary tree as in Propo-
sition 1. The average H-�tness transform matrix A(Hn)

corresponding to the Haar-like transform Hn = H
(P )
n (de-

�ned by the tree P ) will have the following form:

A(Hn) = 2�
n
2

"
2
n1
2 A(In1)


� k1O
j=1

v(c
(1)
j
)

�
� � �

� � � 2
nt
2 A(Int)


� ktO
j=1

v(c
(t)

j
)

�#
; (13)

where A(In) is de�ned by (7), v(0) =

 
1
1
2

!
; v(1) = 

1
�1
0

!
; and all other items as in the proposition 1.

Proof. Using proposition 1, formula (8) and simple prop-
erties of the Kronecker product, we obtain an analytical
expression for A(Hn): Vectors v(0) and v(1) are obtained

by v(0) = A(I1)
�
1
1

�
; v(1) = A(I1)

�
1
�1
�
:

Using (8) it is easy to derive the Walsh-schema transform
(vector-matrix version of (4)), or, equivalently, the Walsh-
average �tness transform:

~f = A(Wn)g;

where

A(Wn) = 2�n=2

" 
1 0
0 1
1 1

!�
1 1
1 �1

�#
n

= 2�n=2

 
1 1
1 �1
2 0

!
n

(14)

and
g = Wnf ;

Wn = 2�
n
2

�
1 1
1 �1

�
n
is the Walsh transform matrix.

Similarly, using (13) one can derive other schema trans-
forms, i.e. the Haar-like average �tness transforms.
Let us change the basis functions of Haar wavelets to an-

other rectangular basis, that forms the class of nonorthog-
onal Reed-Muller wavelet packets. The name comes from
the fact that in the extreme case (i.e. when we have the full
binary tree decomposition) this construction leads to the
Reed-Muller (or conjunctive) transform [1]. In the case of
the octave-band tree it leads to oblique wavelets (see, [2]).
Analysis and synthesis pairs of �lters for the corresponding
�lter bank are:

H0(z) = 1;H1(z) = z � 1;G0(z) = 1 + z
�1;G1(z) = z

�1
:

First, we give an analytic expression for the inverse ma-

trix [K
(P )
n ]�1 of the Reed-Muller packet matrix K

(P )
n cor-

responding to a pruned tree P of the binary tree of depth
n:
Proposition 3. Let P be a pruned tree as de�ned in

Proposition 1. The matrix [K
(P )
n ]�1 corresponding to the

decomposition tree P will have the following form:

[K(P )
n ]�1 =

"
In1 


� k1O
j=1

h
�(c

(1)

j
)

�
� � �

� � � Int 

� ktO

j=1

h
�(c

(t)

j
)

�#
; (15)

where hi is the ith column of the inverse Reed-Muller ma-

trix K�1
1 =

�
1 0
�1 1

�
; and all other notations are similar

to those in Proposition 1.
As an example, the transform matrix for the tree in Fig.

1, is:

[K(P )
n ]�1 =

�
In�2


�
1
�1
�


�

1
�1
�

In�2

�
0
1

�


�

1
�1
�

In�1 

�
0
1

��
:

Proposition 4. Let P be a binary tree speci�ed in
Proposition 1. The average H-�tness transform matrix
A(Kn) corresponding to the Reed-Muller-like transform

K
(P )
n (de�ned by the tree P ) will have the following form:

A(Kn) =

"
A(In1)


� k1O
j=1

w(c
(1)

j
)

�
� � �

� � � 2
nt
2 A(Int)


� ktO
j=1

w(c
(t)
j
)

�#
; (16)

where A(In) is de�ned by (7), w(0) =

 
1
�1
0

!
; w(1) = 

0
1
1

!
; and all other items as in Proposition 1.



Proof follows from Proposition 3 and formula (8). Vec-

tors w(0) and w(1) are obtained by w(0) = A(I1)
�

1
�1
�
;

w(1) = A(I1)
�
0
1

�
:

We have the following average-�tness matrix for the
Reed-Muller transform:

A(Kn) =

" 
1 0
0 1
1 1

!�
1 0
�1 1

�#
n
=

 
1 0
�1 1
0 1

!
n

(17)

Comparing this with the Walsh average-�tness matrix (14)
one can see that there is no scaling factor 2 for low-order
schemata, and it has a much shorter sum for speci�cation
of high-order schemata.
In order to compare complexities of calculation of schema

average �tness values we analyze average �tness cost vec-
tors corresponding to di�erent rectangular wavelet packet
transforms.

5. RECTANGULAR WAVELET PACKETS
AND FITNESS AVERAGE COST VECTORS

Recall that each orthogonal Haar-like transform corre-
sponds to a pruned tree structure. Fixing a pruned tree
G we will construct a pruned tree G0 = [G; j] just by
adding branches to the jth node (i.e. node with the code
j = (j1; j2; :::; jp); p < n) of G.

Proposition 5. An average H-�tness cost vector r(G0)
corresponding to the tree G0 = [G; j] can be obtained from
an average H-�tness cost vector r(G) corresponding to G
according to the following procedure:

r(G0) = r(G) + r
0(j);

where, as an initialization step, the average In-�tness cost
vector r(:) (i.e. for the trivial tree) has the form r(:) =
(1 2)
n; and

r
0(j) =

p�1O
i=0

(1 j
p�i)
 (1 2)
(n�p�1) 
 (1 � 1);

j = (j1; j2; :::; jp); (jk 2 f0; 1g); jk is the negation of jk,

k = 1; :::; p; and (1 2)
a is the ath Kronecker power of
(1 2):
Proof follows from the fact that the transform matrix HG0

corresponding to the tree G0 = [G; j] can be constructed
from the matrix HG by HG0 = HGDj; where Dj is the
block-diagonal matrix Dj = diag(B0; :::;B2p�1) and Bj =

[In�p�1 
 (1 1)T In�p�1 
 (1 � 1)T ] and other Bk; k 6= j
are the identity matrices In�p:
In Figure 2 a recurrent construction of the average H3-

�tness cost vector r for the Haar wavelet packet transforms
is shown.
Similar construction for r(H) can be done also for the

Reed-Muller wavelet packets.
Analyzing vectors r(H) one can see that the minimum

number of terms for specifying the low-order schemata
(corresponding to the kth elements of the vector r(H),
k = (k1; :::; kn), such that wH(k), the Hamming weights of
k, are high) among the Haar wavelet packet transforms and
Reed-Muller wavelet packet transforms is achieved for the

Reed-Muller transform (since in this case rk = 1:5n�wH (k)).
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1 0 -1 0 2 0 -2 0
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Figure 2. Recurrent construction of an average H-�tness
cost vector r for the Haar wavelet packet transforms

6. CONCLUSION

Some results on the average �tness function in genetic al-
gorithms using wavelet packets have been reported in this
paper. The main attentioned focused on the wavelet packet
transforms generated from the Haar basis, and the Reed-
Muller basis. The octave band decomposition for last case is
corresponding to the so-called oblique wavelets investigated
in [2].
Simple vector-matrix relations were used for the speci�ca-

tions of an average H-�tness transform for any nonsingular
matrix H: Analytical expressions for the average H-�tness
transform matrices are obtained.
Comparing the results for the average �tness functions we

�nd that the Reed-Muller-like transforms required shorter
sums for low order schemata than the Haar-like transforms.
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