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Abstract

In this paper, an iterative time-frequency (TF)

synthesis/time-varying �ltering algorithm in the discrete

Gabor transform domain is proposed. A su�cient condi-

tion is obtained for the Gabor synthesis and analysis win-

dow functions so that the iterative algorithm converges. It

is proved that under the condition the algorithm converges

to a signal that has its Gabor transform located exactly in

a desired domain speci�ed by the user in the TF plane.

Under the condition the solution from the �rst iteration

is exactly the least square solution. Our numerical exam-

ples show: about 3.5 dB or more SNR gain over the least

square solution; about 13dB SNR increase over the SNR

without �ltering; lower computational complexity.

1 Introduction

Traditional linear �ltering based upon Fourier trans-

form plays an important role in stationary/narrow band

signal extraction/processing. A narrow band signal buried

in a wide band noise can be extracted by using a bandpass

�lter that covers the band the signal occupies. The proce-

dure is simple: take the Fourier transform ŝ(!) of the noisy
signal s(t); mask the spectrum ŝ(!) by using the bandpass
�lter H(!) as ŝ(!)H(!); take the inverse Fourier trans-

form of the masked spectrum as the �ltered signal �s(t).
With this technique a wide band noise will be e�ciently

rejected while the narrow band signal is still maintained.

The above traditional linear �ltering technique

will, however, fail when a signal itself is wide

band/nonstationary, such as, chirps, speech, and frequency

hopped spread spectrum signals. Recently, many new tech-

niques have been developed for exploiting/extracting fea-

tures of nonstationary signals. The main idea for these

techniques is to map one dimensional signals in the time

domain into two dimensional signals in the joint TF do-

mains by exploiting the local behavior of nonstationary

signals. For convenience, we name these techniques TF

transforms.

Usually, TF transforms add redundancy in the TF do-

main to the signal in the time domain. They spread noise

over the whole TF plane and meanwhile contain the sig-

nal information in some localized areas as shown in Fig.
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1(a)-(c). Therefore, TF transforms usually signi�cantly

increase the signal-to-noise ratio in the TF domain. In

other words, signals in the TF domain may be easier to be

detected than in the time domain alone. With this obser-

vation, one might use the following idea for extracting the

signal in the time domain analogious to traditional linear

�ltering: take the TF transform of a noisy signal s(t); mask

the TF transform in the TF plane as shown in Fig. 1(d);

take the inverse TF transform of the masked TF transform

shown in Fig. 1 (d) as ~s(t).
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Figure 1: TF transform illustration.

With traditional linear �ltering, there is no question

about that the Fourier spectrum of the �ltered signal �s(t)
has the desired frequency band. This is because that the

Fourier transform is a one-to-one and onto mapping. Any

signal in the frequency domain corresponds to a unique

signal in the time domain. This is, however, no longer

true in general for TF transforms. Not every signal in the

joint TF domain corresponds to a signal in the time do-

main due to the fact that TF transforms are redundant

and not onto transformations. This implies that the TF

transform of the �ltered ~s(t) may not fall in the masked do-

main as shown in Fig. 1 (d)-(e). With this observation, let

us state the general TF synthesis problem (or time-variant

�tering). Given a user speci�ed, localized time-frequency

domain in the TF plane, �nd the corresponding time do-

main waveform. The traditional approach to this problem

is the least square solution method, which �nds the signal

in the time domain that minimizes the squared error be-

tween the signal's TF transform and the desired one (see,

for example, [1] for ambiguity functions, [3-7]). There are



two drawbacks to the least square solution method. The

�rst one is that although the error between the TF trans-

form of the solution and the desired one is minimized in

the mean squared error sense, the TF transform of the so-

lution is not guaranteed to have the desired time-frequency

characteristics. This means the solution may not be the

desired one as illustrated later by examples.The second

drawback is the computational complexity when signals

are fairly long, which is quite often the case in practice.

This is because the calculation of the pseudo inverses of

the matrices needed for the least square solution method

is computationally expensive when their sizes are large.

In this paper, we focus our attentions on one family of

TF transforms, which is discrete Gabor transforms. We

propose an iterative algorithm for the above time-varying

�ltering problem. Conditions on the window functions of

discrete Gabor transforms are obtained for the conver-

gence of the iterative algorithm. We prove that, under

the conditions on the window functions, the discrete Ga-

bor transform of the limit of the time waveforms from the

iterative algorithm does have the desired TF domain spec-

i�ed by the user. Furthermore, we prove that, under the

conditions, the �rst iteration of the iterative algorithm is

exactly the least square solution. Improvement over the

least square solution occurs with more iterations, which

can be seen clearly from our numerical examples. From our

various numerical examples, about 3.5dB or more signal-

to-noise (SNR) ratio gain can be obtained over the least

square solution. The SNR with the iterative algorithm in-

creases about 13dB over the original one without �ltering.

2 An Iterative Algorithm

Review of discrete Gabor transform. For more

details about discrete Gabor transforms, see [8-14]. Let a

signal s[k], a synthesis window function h[n] and an anal-

ysis window function 
[n] be all periodic with same period

L, which satisfy the Wexler-Raz identity

L�1X

k=0

h[k +mN ]W�nMk
L 
�[k] = �[m]�[n]; (2.1)

where 0 � m � �N � 1; 0 � n � �M � 1, �M and �N
are the time and the frequency sampling interval lengthes,

and M and N are the numbers of sampling points in the

time and the frequency domains, respectively, M ��M =

N � �N = L, MN � L (or �M�N � L). The critical

sampling case is when M �N = �M ��N = L.

Discrete Gabor transform (DGT) G and its inverse

(IDGT) H can be also represented in the following ma-

trix forms. Let

C = (C0;0; C0;1; � � � ; CM�1;N�1)
T ;

s = (s[0]; s[1]; � � � ; s[L� 1])
T :

The DGT can be represented by the MN � L matrix

GMN�L with its (mN +n)th row and kth column element


�m;n[k] = 
�[k �m�M ]W�n�Nk
L :

The IDGT can be represented by the L � MN matrix

HL�MN with its kth row and (mN +n)th column element

hm;n[k] = h[k �m�M ]Wn�Nk
L :

Thus,

C = GMN�Ls and s = HL�MNC: (2.2)

The condition (2.1) implies that

HL�MNGMN�L = IL�L; (2.3)

where IL�L is the L� L identity matrix.

Iterative Algorithm in the Gabor domain: As

mentioned in Introduction, the oversampling of the DGT

adds redundancy, which is usually prefered for noise re-

duction applications. From (2.2)-(2.3), one can see that

an L dimensional signal s is transformed into an MN di-

mensional signal C and MN is greater than L due to the

oversampling. Therefore, only a small set of MN dimen-

sional signals in the TF plane have their corresponding

time waveforms with length L. Let DMN�MN denote the

mask transform, speci�cally, a diagonal matrix with diag-

onal elements either 0 or 1. Let s be a signal with length

L in the time domain. The �rst step in the time-varying

�ltering is to mask the TF transform of s

C1 = DMN�MNGMN�Ls;

where DMN�MN masks a desired domain in the TF plane.

Since the DGT GMN�L is a redundant transformation,

the IDGT of C1, HL�MNC1, may not fall in the mask. In

another words, generally,

GMN�LHL�MNC1 6= DMN�MNGMN�LHL�MNC1;
(2.4)

where MN > L, which is illustrated in Fig. 1(e). Notice

that, in the critical sampling case, i.e., MN = L, the in-
equality (2.4) becomes equality. An intuitive method to

reduce the di�erence between the right and the left hand

sides of (2.4) is to mask the right hand side of (2.4) again

and repeat the procedure, which leads to our iterative al-

gorithm:

s0 = s; (2.5)

Cl+1 = DMN�MNGMN�Lsl; (2.6)

sl+1 = HL�MNCl+1; (2.7)

l = 0; 1; 2; ::::

The above iterative algorithm is illustrated in Fig. 2.

The complexity for the iterative algorithm (2.5)-(2.7)

is low, which does not need to compute inverses of ma-

trices. By considering the DGT and IDGT, the computa-

tional complexity in (2.5)-(2.7) is proportional to the signal

length multiplied by the window length, i.e., LLW . Notice

that the complexity of directly computing the inverse ma-

trices in the least square solution is proportional to L3.
Therefore, when the length of window functions h and 
 is

much shorter than the length of the signal s, the compu-

tational complexity in the iterative algorithm (2.5)-(2.7) is

much lower than the one for the least square solution.
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Figure 2: Iterative time-varying �ltering algorithm.

The following main results are based on the condition

�N�1X

l=0


�[lN + k]h[lN + k +m�M ]

=

�N�1X

l=0

h�[lN + k]
[lN + k +m�M ]; (2.8)

for k = 0; 1; :::; N � 1 and m = 0; 1; :::;M � 1.

Theorem 1: The product matrix GMN�LHL�MN is Her-

mitian if and only if condition (2.8) for the window func-

tions h and 
 holds.

There are two trivial cases where the condition (2.8)

holds. The �rst case is the orthogonal-like case: h[n] =

[n] for all integer n. The second case is the critical

sampling case: �M = N . Notice that the continuous

Gabor transform is never orthogonal-like unless the win-

dow functions are badly localized in the frequency domain.

This, however, is not the case for the DGT. The most

orthogonal-like solution was studied by Qian et. al. in

[8-12]. They showed that it is possible to have the analy-

sis window function 
 very close to the synthesis window

function h when h is truncated Gaussian. The error be-

tween h and 
 is less than 2� 10�6 while they are of unit

energy, and therefore the error is negligible. We will see

numerical results later in the next section.

Theorem 2: Under condition (2.8), the DGT of the limit

�s of the iterative algorithm (2.5)-(2.7) falls in the mask

DMN�MN , i.e.,

GMN�L�s = DMN�MNGMN�L�s: (2.9)

With the above result, one might ask whether it violates

the known fact that an image of a TF transform of a signal

in the TF plane can not be compact support. This is

because that a signal can not be time and band limited

simutaneously. To answer this question, we �rst need to

know that the above known fact is true for continuous TF

transforms. Moreover, the proof of the fact is based upon

the marginal properties of TF transforms. It may not be

true for discrete TF transforms. In other words, discrete

TF transforms may have compact support [11].

Theorem 3: Under condition (2.8), the �rst iteration s1

of the iterative algorithm (2.5)-(2.7) is equal to the least

square solution.

With Theorem 3, one will see in the next section

that the iterative algorithm (2.5)-(2.7) improves the least

square solution when number of iterations increases, and

meanwhile one does not need to compute the inverse ma-

trix.

3 Numerical Example

The test signal is a chirp signal, where its time waveform

and its Fourier spectrum are shown in Fig. 3:

x[n] = cos(2�((n+ 1)=115)3); 0 � n < 500: (3.10)

The received noisy signal, shown in Fig. 4, is s(n] = x[n]+
�[n], where �[n] is white Gaussian noise. From Figs. 3-4, it

can be seen that the traditional Fouier transform �ltering

may not work in reducing the noise.

The window function length is chosen 256, while the

above signal length is 500. The time sampling interval

length �M = 16 and the frequency sampling interval

length �N = 2. The window functions we used, their

di�erence, and the absolute values of the di�erences be-

tween the left and right hand sides of condition (2.8) are

shown in Fig. 5, respectively. One can see that for this

pair the synthesis and the analysis window functions are

almost same and condition (2.8) is satis�ed numerically.

We apply the iterative algorithm (2.5)-(2.7) to extract the

signal in (3.10). The signal-to-noise ratio vs. iteration is

shown in Fig. 6 as well as the di�erence between the Gabor

transform of the solution and the desired one. As shown in

Fig. 6, a 3:5dB gain over the least square solution method

(marked by a *) is obtained. The original SNR is �2:4 dB
while the SNR for the �ltered signal is 11:7dB. We also

tested another pair of window functions that do not sat-

isfy condition (2.8) and found that the iterative algorithm

does not converge.

4 Conclusion

In this paper, we proposed a new time-varying �ltering

algorithm for wideband/nonstationary signals, where tra-

ditional �ltering in the Fourier domain fails. We obtained

a su�cient condition on the convergence of the iterative

algorithm. We proved that, under the condition, the limit

of the time waveforms from the iterative algorithms has

the desired TF characteristics. We also proved that, under

the condition, the �rst iteration is equal to the least square

solution. A numerical example was presented to illustrate

the theory. As a remark, the new algorithm performs even

better when the rate of the oversampling is higher based

upon our various numerical examples.
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Figure 3: The chirp signal and its Fourier spectrum.
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Figure 4: Noisy signal and its Fourier spectrum.
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Figure 5: Window functions.
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Figure 6: Solid line: SNR vs. iteration steps, where

the least square solution is marked by *; Dashed line:

The errors between masked and unmasked DGT of the

iteration solutions.


