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ABSTRACT

We investigate the formulation of boundary compen-

sated wavelet transforms supported on a �nite interval.

A uni�ed approach to boundary compensated wavelet

transforms is presented which fosters new insights into

previous constructions, including both continuous and

discrete approaches to the problem. The framework en-

ables the design of boundary-compensated transforms

with speci�c properties, including among others arbi-

trary frequency response, matching moments, and stag-

gered supports.

1. INTRODUCTION

To date, there remain unresolved issues concerning the

application of wavelet transforms to �nite data sets.

Such issues as boundary conditions, sequence lengths,

and irregular support regions prevent the realization

of the full potential which wavelet analysis may have

to o�er. While for some applications these issues are

easily resolved, there are others for which they become

critically important, especially in areas such as geo-

physics or image processing where the data at the edge

of a �eld is as, if not more, important than the inte-

rior. In our work with satellite altimetry data sets, we

have realized the need for more general constructions of

wavelet transforms which focus on eliminating bound-

ary distortion e�ects. This proposal outlines a uni-

�ed approach to constructing wavelet bases which live

on the interval. This framework encompasses previous

constructions and suggests variations which may better

suit some applications, including control over moment

properties and temporal response of the resulting edge

functions. We have used the resulting constructions

on the �nitely-supported �elds resulting from oceano-

graphic surveys using satellite remote-sensing data.
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tional Aeronautics and Space Administration's Mission to Planet

Earth, Grant #NGT-51398, in cooperation with the Colorado
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2. BOUNDARY-COMPENSATED

WAVELET TRANSFORMS

The problem of edge e�ects in �ltering is by no means

a new one, although it a�ects the DWT (and other

dyadic tree �lter banks) in a unique fashion. There are

several conventional methods of correcting for (or min-

imizing the e�ects of) boundary distortion in �lters, in-

cluding zero-padding, data reection, windowing, and

periodization, to name a few [1]. Although some show

improvement, it is evident that none provide an ideal

solution to the problem. All su�er from some degree

of distortion. To make matters worse, any distortion

introduced by �ltering is made even worse by sub-

sequent �ltering inherent in the binary tree-structure

used to implement wavelet transforms. These conven-

tional means of treating the boundaries of data in sig-

nal processing are unsatisfactory, in that they address

only the implementation part of the problem. They

are used only in the algorithm used to implement the

DWT. Other solutions to the boundary distortion prob-

lem exist if we examine instead the wavelet transform

itself.

2.1. Wavelets on the interval: a uni�ed frame-

work

Although the DWT is implemented in discrete fash-

ion, it enjoys a rich interpretation in the continuous

domain in terms of the underlying basis scaling func-

tions and wavelets. On the in�nite line, we are guaran-

teed a wavelet representation for any function in L2(R).

However, a compactly-supported function on an inter-

val [a; b] does not necessarily have a representation in

the scaling function basis which spans the same sup-

port of the function. In addition to the basis functions

which have the same support as the function itself,

we have several basis functions which will have some

support both in and out of the function's interval of

support. It is precisely the fact that we require basis

functions whose support falls outside the interval of in-



terest which leads to the boundary distortion e�ects. A

logical solution to the problem addresses the spillover

of these edge functions into the region of support out-

side the function's support. Such constructions have

been recently considered, and are generally known as

wavelets on the interval. They are approached from

two distinct, but related, viewpoints: continuous [2]

and discrete constructions [3, 4]. We outline a uni�ed

framework from which to approach both constructions,

including insights into their similarities and di�erences.

This general framework can be shown to include sev-

eral previous constructions found in the literature, as

well as suggesting alternate constructions.

The starting point for the general construction is

a standard biorthogonal wavelet basis with compact

support [5], de�ned by the lowpass �lter h and as-

sociated dual �lter g. For a given �lter length N ,

the associated basis functions will have support on
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e]. We wish to form boundary func-

tions which are supported only on the half-in�nite

interval [0;1) (the right side of the interval is con-

structed in an analagous manner.) Since the resulting

functions must live in the same multiresolution analy-

sis (MRA) de�ned by the interior functions, we begin

by de�ning �b(x), a vector of r boundary scaling func-

tions, via a dilation equation:
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where �2(x) is the vector of untruncated interior scal-

ing functions and H� = [H
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2 ] is the unknown dila-

tion matrix. Similarly, de�ne a vector of r boundary

wavelets as:
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and the dual boundary basis:
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De�ne the dilation operator as the matrix D which

dilates vectors by a factor of two:
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and note that AD dilates the rows of A, DTA dilates

the columns of A, and DDT = I. The vector of all

boundary functions is then given as
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The problem then is the determination of appropriate

matrices H and G such that the underlying boundary

functions maintain the structure of the interior MRA

as closely as possible. The boundary �lters de�ned by

the rows of the dilation matrices can then be used in

conjunction with the standard interior �lters to form a

boundary-compensated wavelet transform.

The boundary functions associated with any choice

for H and G must satisfy biorthogonality conditions.

The grammian associated with the boundary functions

is

S
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and can be explicitly evaluated using
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Biorthogonality requires that S
�b

~�b
= I, a condition

su�ciently satis�ed when HG = I. In addition, the

new boundary functions must remain biorthogonal to

the original interior functions.

Biorthogonality alone does not guarantee bound-

ary functions which will satisfy the underlying MRA,

however. In addition, there are standard admissibil-

ity conditions which must be met. Although stronger

than necessary, the conditions
R
1

0
�n(x)dx = 1 andR
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0
 n(x)dx = 0 su�ce. In order to evaluate these ex-

pressions, we require the ability to calculate moments

of the boundary functions. De�ne

M
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the lth moment of � shifted by k. (When omitted,

the parameter k is assumed to be zero.) Then the lth

moment of the boundary functions is calculated as:
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The moments of the interior functions are known ex-

plicitly from the interior �lter coe�cients. In order

to satisfy
R
1

0
�n(x)dx = 1, we can solve (10) for

M
�b

l = 1. Since the interior scaling functions integrate

to one by de�nition, this yields the condition H1 = 1,

or that the boundary �lter coe�cients must sum to

unity, just like the interior coe�cients. Similar argu-

ments can be used to show that the boundary wavelet

�lters must sum to zero.



These conditions guarantee the existence of under-

lying basis functions which are admissible. However,

the resulting bases can be further constrained so as to

help minimize the distortion yielded by the boundary

basis. The boundary basis functions can be constructed

in such a manner that their low-order moments will

agree with the moments of the truncated interior basis

functions which they are replacing. As above, this cor-

responds to restrictions on weighted sums of the bound-

ary �lter coe�cients. The result is a transform which

is less sensitive to edge e�ects.

Because of the intimate ties between the DWT ma-

trices and the underlying continuous basis functions,

it is relatively easy to impose other characteristics on

the continuous wavelet bases produced. QR factoriza-

tion can be used to provide boundary functions with

staggered supports. The family of orthogonal bases is

also included in this framework; indeed, a few appli-

cations of the SVD algorithm yields orthonormalized

versions of the bases produced here [6]. Depending

on the application for which the basis is being con-

structed, there may be criterion more important to

consider than the ones presented here. This could in-

cluded equal-length �lters, coiet-like boundary func-

tions, nearly-orthogonal functions, and/or �lters with

a speci�c phase response.

2.2. Construction of the boundary functions

A useful advantage to viewing the boundary problem

using the notation of the previous section is that it leads

to relatively simple algorithms by which the actual

boundary �lters may be constructed. Simply put, the

design problem is to construct two �nite-dimensional

matrices which are mutually inverse. Begin with Hi,

the truncated DWT convolution matrix associated with

the interior �lters, and choose candidate boundary �l-

ters as the r truncated �lters whose support falls out-

side the left boundary. De�ne Gi in a similar fashion.

Project the candidate �lters onto the nullspace of Gi,

yielding �lters orthogonal to the columns of Gi. These

�lters h and any linear combination of them Ah will

remain in the nullspace of Gi. We then wish an appro-

priate combination of �lters with desirable moments

properties. In particular we require

Ah
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where v = [0 1 � � � (N � 1)]T and �v is the modulated

version of v. There are additional degrees of freedom

in (11) for a basis of given vanishing moments that can

be exploited. We use these to inuence the temporal

impulse response of the �lters. In particular, we would
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Figure 1: SSH �eld in the Gulf of Alaska as viewed by

the TOPEX altimeter.

like the boundary �lters to resemble their truncated

counterparts as closely as possible. This is equivalent

to solving

min kA� Ik
2
s:t: kAX�Yk

2
= 0 (12)

Vectorizing the equations and applying Lagrange mul-

tipliers yields the solution for A. Once the analysis

�lters are determined, the dual �lters are then calcu-

lated by projecting truncated dual �lters onto the row

nullspace of Hi and normalizing. The resulting H and

G are then mutually inverse at the left boundary and

interior. Repeating the above procedure at the right

boundary completes the construction.

3. APPLICATION

Using the method outlined in Section 2.2, we con-

structed a biorthogonal basis which minimized the

boundary distortion e�ects seen in applying the DWT

to �nite two-dimensional data sets. As an example

of the e�ectiveness of the constructed basis, consider

the image in Figure 1 showing the sea surface height

(SSH) �eld in the Gulf of Alaska as measured by the

TOPEX satellite altimeter. Taking the boundary com-

pensated DWT of the image using the construction of

wavelets on the interval in [2], one obtains the analysis

shown below in Figure 2. The distortion introduced

along the edges of the image are an order of magnitude

larger than the interior magnitudes, making it di�cult

to discern trends in the interior, and completely mask-

ing trends at the image boundary.

The basis constructed in the previous section is used

on the same image, with results shown in Figure 3.

Because the basis was constructed so as to minimize

boundary distortion e�ects, the analysis subspaces are
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Figure 2: 2D-DWT of the image in Figure 1 based on

CDV bases of order 3.

much cleaner, with trends tracking even at the image

boundaries. This represents a clear advantage in terms

of subjective scienti�c image analysis using wavelet

transforms. The basis is also \nearly orthogonal", en-

abling signal separation using partial subspace recon-

struction with relatively little distortion introduced by

aliasing. However, if partial reconstruction is a major

criterion for designing a wavelet basis, then biorthogo-

nal solutions may not be the best choice.

Figure 3: DWT based on constructed biorthogonal

bases with three vanishing moments.

4. CONCLUSION

The new framework has several advantages over previ-

ous construction methods. It provides a common no-

tation and derivation which includes many of the con-

structions published to date. This a�ords a means by

which one may compare constructions. A major ad-

vantage to the framework outlined here is that it is

vectorized. This allows the use of standard linear al-

gebra to achieve desirable properties of the resulting

boundary basis functions. For example., QR factor-

ization can be performed, yielding a unitary transfor-

mations of one set of boundary functions into another

set with staggered supports. A number of other results

from unitary matrix theory can be used to achieve other

properties for the boundary functions. Still other algo-

rithms such as the SVD can be used to perform quick

and e�cient orthonormalization. Another bene�t of

the new construction is the existence of e�cient algo-

rithms for explicitly computing such quantities as the

moments of the boundary functions. We have derived

algorithms which can quickly compute boundary mo-

ments, shifted moments, continuous approximations,

and others. These can be used to study regularity prop-

erties and continuity of the boundary functions at the

interval edge.
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