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ABSTRACT

The Wigner distribution (WD) possesses a number of desir-
able mathematical properties relevant time-frequency anal-
ysis. However, the presence of interference terms renders
the WD of multicomponent signals extremely di�cult to in-
terpret. In this work, we propose an adaptivedecomposition
of the WD using extended libraries of orthonormal bases. A
prescribed signal is expanded on a basis of adapted wave-
forms, that best match the signal components, and subse-
quently transformed into the Wigner domain. The interfer-
ence terms are controlled by thresholding the cross WD of
interactive basis functions according to their degree of ad-
jacency in an idealized time-frequency plane. This measure
is implicitly adapted to the local distribution of the signal,
thus compensating for a global nonadaptive threshold. In
particular we focus on a shift-invariant decomposition in an
extended library of wavelet packets. The resulting modi�ed
distribution achieves high time-frequency resolution, and is
superior in eliminating interference terms associated with
bilinear distributions.

1. INTRODUCTION

The Wigner distribution (WD) has long been of special in-
terest, because it possesses a number of desirable mathe-
matical properties [1, 2], including maximal autocomponent
concentration in the time-frequency plane. In spite of its
desirable properties, the practical application of the WD is
often restricted by the presence of interference terms. These
often renders the WD of multicomponent signals extremely
di�cult to interpret.
Several methods, developed to reduce noise and cross-

components at the expense of reduced signal concentra-
tion, employ some kind of smoothing kernel or windowing
[3, 4, 5, 6]. The choice of the kernel dramatically a�ects
the appearance and quality of the resulting time-frequency
representation. Hence adaptive representations [5, 7, 8] of-
ten exhibit performances far surpassing that of �xed-kernel
representations. However, they are either computation-
ally expensive or have a very limited adaptation capability.
Another approach striving for cross-term suppression with
minimal resolution loss [9, 10, 11] uses the Gabor expan-
sion to decompose the WD. Interference terms are readily
identi�ed as cross WD of distinct basis functions. Here, a
major drawback is the dependence of the performance on
the choice of the Gabor window. An appropriate window
selection depends on the data and may di�er for di�erent
components of the same signal. Furthermore, distinct basis
functions which are \close" in the time-frequency plane are
often related to a single signal component. Such a cross-

term does not necessarily represent an interference term,
but rather may have a signi�cant e�ect on the energy con-
centration. It is possible to de�ne a distance threshold that
discriminates between such auto terms and \true" interfer-
ence terms. However, this threshold is locally dependent on
the distribution and has to be determined adaptively.
In this paper, we propose an adaptive decomposition

of the WD using extended libraries of orthonormal bases.
Analogous to the approach in [9, 10, 11], a prescribed sig-
nal is expanded on a certain basis and subsequently trans-
formed into the Wigner domain. Here, the basis is selec-
tively constructed out of a redundant library of waveforms
to best match the signal components, thereby concentrating
its representation into a relatively small number of signif-
icant expansion coe�cients. The waveforms of the library
are well localized in the time-frequency plane, and orga-
nized in a binary tree structure facilitating e�cient search
algorithms for the best basis. In particular we focus on
a shift-invariant decomposition in an extended library of
wavelet packets [12]. The resultant best-basis representa-
tion is preferable to the standard wavelet packet decompo-
sition (WPD) [13] due to its desirable properties. Namely,
shift-invariance, lower information cost and improved time-
frequency resolution [14].
The interference terms in the Wigner domain are con-

trolled by adaptively thresholding the cross WD of interac-
tive basis functions according to their distance in an ideal-
ized time-frequency plane. The distance measure is related
to a degree of adjacency by weighing the Euclidean time-
frequency distance with the self distribution of the basis-
functions. Accordingly, the distance is implicitly adapted
to the local distribution of the signal, and local adjustments
of a suitable threshold are no longer required.

2. EXTENDED LIBRARY OF WAVELET
PACKETS

Overcomplete libraries of waveforms that span redundantly
the signal space encourage adaptive signal representations.
Instead of representing a prescribed signal in a �xed basis, it
is often useful to choose a suitable basis that facilitates a de-
sired application, such as compression, identi�cation, classi-
�cation or noise removal (denoising). Of particular interest
are the libraries of wavelet packet bases, which consist of
translations and dilations of wavelet packets, and libraries
of local trigonometric bases, comprising sines and cosines
multiplied by smooth window functions [13, 15]. The ba-
sis functions are localized in the time-frequency plane, and
organized in a binary tree structure where e�cient search
algorithms for the best basis can be implemented.
A serious drawback of the wavelet packet decomposition

(WPD) and local cosine decomposition (LCD) [13] is the



lack of shift-invariance. Hence we employ modi�ed versions
which induce shift-invariance, lower information cost and
improved time-frequency resolution [12, 16, 17].
Let us speci�cally consider the shift invariant wavelet

packet decomposition (SIWPD) [12, 14]. The library of
bases is extended by introducing an additional degree of
freedom that adjusts the time-localization of the basis func-
tions. This degree of freedom is practically incorporated
into the search algorithm as an adaptive even-odd down-
sampling. That is, following the low-pass and high-pass
�ltering, when expanding a parent-node, we retain either
all the odd samples or all the even samples, according to
the choice which minimizes the cost function.
Let f n(t) : n 2 ZZ+g be a wavelet packet family [13]

generated by

 2n(t) =
p
2
X
j2ZZ

hj n(2t� j) (1)

 2n+1(t) =
p
2
X
j2ZZ

gj n(2t� j) (2)

where gj = (�1)jh1�j , and  0(t) � '(t) is an orthonormal
scaling function, satisfying

h'(t� p); '(t� q)i = �p;q ; p; q 2 ZZ : (3)

The extended library of wavelet packets is de�ned as the
collection of all the orthonormal bases which are subsets of�

B`;n;m : 0 � ` � L; 0 � n;m < 2L�`
	
; (4)

where L denotes the �nest resolution level, and

B`;n;m �
�
2`=2 n

�
2`(t� 2�Lm)� k

�
: 0 � k < 2`

	
:

(5)
This library is larger than the standard library by a square
power, but can be still structured into a tree con�gura-
tion which supports fast search algorithms [12]. The ad-
ditional parameter m provides the crucial degrees of free-
dom required for the time-adjustment of the basis func-
tions. When an analyzed signal is translated in time by
� = q � 2�L (q 2 ZZ), a new best-basis is selected whose
elements are also translated by � compared to the former
best-basis. Thus the expansion coe�cients remain, and the
time-frequency representation is shifted in time by the same
period.
Compared with the standard WPD, the SIWPD is de-

termined to be advantageous in three respects: The best
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Figure 1. Test signal g(t) consisting of a short pulse,
a tone and a nonlinear chirp.

basis expansion is shift-invariant, characterized by a lower
information cost, and the complexity is controlled at the
expense of the information cost down to O(Nlog2N) [14].
These desirable properties advance signal analysis, com-
pression, identi�cation and classi�cation applications. To
illustrate the shift-invariant properties of the SIWPD and
its enhanced time-frequency representation compared to the
standard WPD, we refer to the expansion of the signal g(t),

depicted in Fig. 1. This signal, containing 27 = 128 sam-
ples, comprises a short pulse, a tone and a component with
nonlinear frequency modulation. Figs. 2 and 3 display the
best-basis expansions under the WPD and the SIWPD algo-
rithms, respectively, for the signals g(t) and g(t�2�6). The
sensitivity of WPD to temporal shifts is obvious, while the
best-basis SIWPD representation is indeed shift-invariant
and characterized by a lower entropy.

3. ADAPTIVE DECOMPOSITION OF THE
WIGNER DISTRIBUTION

The tilings of the time-frequency (TF) plane are idealized
representations interconnected with speci�c basis expan-
sions. A basis-function is symbolized by a rectangular cell
whose area is associated with Heisenberg's uncertainty prin-
ciple, and its shade is proportional to the corresponding
coe�cient squared. To form time-frequency distributions,
we sum up the auto WD of the basis functions and cross
WD of pairs which are \close" in the TF plane. Since the
cross-term interference is caused by the cross WD of distinct
components, one can decide on a distance threshold D in
the TF plane, such that farther basis-functions are consid-
ered unrelated and their cross WD is discarded. The choice
of the best basis maximally concentrates the representation
of the signal into a small number of signi�cant expansion
coe�cients. Thus reducing the computational complexity
and decreasing the number of possible cross-terms.
Let g =

P
�
c�'� be the best-basis expansion of the sig-

nal g. Then its time-frequency distribution is given by

TFDg=
X
�2�

jc�j2W'�+ 2
X

f�;�0g2�

Refc��c�0W'� ;'�0
g (6)

where W'� is the auto WD of '� and W'� ;'�0
is the cross

WD of '� and '�0 :

W'� (t; !) =
1

2�

Z
'
�
�(t� �

2
)'�(t+

�

2
)d� (7)

W'� ;'�0
(t; !) =

1

2�

Z
'
�
�(t�

�

2
)'�0(t+

�

2
)d� (8)

The summations in (6) are limited to basis-functions
whose coe�cients are large enough, and to pairs which are
\close" in time-frequency plane. Let � and D denote respec-
tively thresholds of relative amplitude and time-frequency
distance. Then the sets � and � are de�ned by

� = f� j jc�j � �Mg; M � max
�

fjc�jg

� = ff�; �0g j 0 < d('�; '�0 ) � D; jc�c�0 j � �
2
M

2g:

Here, the distance d between a pair of basis-functions is
measured by their degree of adjacency:

d('�; '�0) =

�
(�t� � �t�0 )2

�t��t�0

+
( �f� � �f�0)2

�f��f�0

�1=2
(9)
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Figure 2. E�ect of a temporal shift on the time-frequency representation using the WPD with
8-tap Daubechies wavelet �lters: (a) g(t) in its best basis, Entropy= 2:69. (b) g(t� 2�6) in its best
basis, Entropy= 2:72.
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Figure 3. Time-frequency representation using the SIWPD with 8-tap Daubechies wavelet �lters:
(a) g(t) in its best basis, Entropy= 1:72. (b) g(t� 2�6) in its best basis, Entropy= 1:72. Compared
with the WPD (Fig. 2), bene�cial properties are shift-invariance and lower information cost.

where (�t�; �f�) is the time-frequency position of the basis-
function '�, and �t� and �f� are the corresponding time
and frequency uncertainties. Accordingly, the Euclidean
time-frequency distance between basis-functions is weighed
with their self distribution. Since the basis elements are se-
lected to best match the signal's components, their distance
is implicitly adapted to the local distribution of the signal,
and the distance threshold no longer needs to be dependent
on the local distribution. By adjusting the distance thresh-
old D and amplitude threshold �, one can e�ectively balance
the cross-term interference, the useful properties of the dis-
tribution (time/frequency marginals, energy conservation,
instantaneous frequency, etc. [2]), and the computational
complexity.
For the extended library of wavelet packets, introduced

in the previous section, the basis-functions are of the form

 `;n;m;k (t) = 2`=2 n
�
2`(t� 2�Lm)� k

�
(10)

where ` is the resolution-level index (0 � ` � L), n is

the frequency index (0 � n < 2L�`), m is the shift index

(0 � m < 2L�`) and k is the position index (0 � k < 2`).
Each basis-function is associated with a rectangular tile in
the time-frequency plane which is positioned about

�t = 2�`k+ 2�Lm+ (2L�` � 1)Ch + (Ch � Cg)R(n) ; (11)

�f = 2`�L[GC�1(n) + 0:5] ; (12)

where Ch and Cg are respectively the centers of energy of
the low-pass and high-pass quadrature �lters h and g [15],
de�ned by

Ch =
1

khk2
X
j2ZZ

jjhjj2 ; Cg =
1

kgk2
X
j2ZZ

jjgjj2 ; (13)

R(n) is an integer obtained by bit reversal of n in a L�` bits
binary representation, and GC�1 is the inverse Gray code
permutation. The width and height of the tile are given by

�t = 2�` ; �f = 2`�L : (14)

Fig. 4(a) shows the SIWPD based time-frequency distri-
bution for the signal g(t), attained by utilizing expression
(6) combined with the thresholds D = 1:5 and � = 0:1.
Fig. 4(b), 4(c), 4(d), 4(e) and 4(f) describe respectively the
WD, the Choi-Williams distribution, the spectrogram, the
cone-kernel distribution and the reduced interference dis-
tribution [6]. Clearly, the SIWPD based time-frequency
distribution obtains high resolution and concentration in
time-frequency, and is superior in eliminating interference
terms associated with the WD.

4. CONCLUSION

Cross terms associated with bilinear distributions are not
necessarily interpretable as interference terms. Any signal
can be broken up in an in�nite number of ways, each of



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Time

(d) (e) (f)

Figure 4. Contour plots for the signal g(t): (a) SIWPD-based time-frequency distribution; (b)
Wigner distribution; (c) Choi-Williamsdistribution; (d) Spectrogram; (e) Cone-kernel distribution;
(f) Reduced interference distribution. The SIWPD yields an adaptive distribution where high
resolution, high concentration, and suppressed interference terms are attainable.

which generates di�erent cross terms. Therefore, it is im-
portant to choose an appropriate decomposition that sep-
arates the parts which are well delineated in the time-
frequency plane. Accordingly, a given signal is expanded
into a redundant library of orthonormal bases, from which
the best decomposition is selected, and subsequently trans-
formed into the Wigner domain. The discrimination be-
tween interference terms and valid cross-terms is deter-
mined according to the degree of adjacency and relative
amplitudes of the interacting basis functions; Only adja-
cent pairs whose coe�cients are large enough are related
to the same component of the signal. The balance between
interference terms, concentration and computational com-
plexity is achieved by adjusting the distance and amplitude
thresholds.
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