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ABSTRACT

We introduce a novel, data-adaptive, and robust �lter-
ing framework: a�ne order-statistic �lters. A�ne or-
der-statistics relate classical order-statistics to observations
in their natural order and thus inherently yield a meaningful
data representation. A�ne order-statistic �lters exploit this
notion to adaptively process nonstationary signals. A�ne
order-statistic �lters overcome many of the limitations as-
sociated with traditional order-statistic �lters, in particu-
lar: �lters in this class are parsimonious in the number of
�lter coe�cients, they are statistically e�cient in a wide
range of signal statistics, and they admit real-valued �lter
weights leading to a wide-range of �ltering characteristics.
The class of a�ne order statistic �lters contains two fami-
lies: the WOS a�ne �lter class whose structure can adapt,
according to the observed data, from an FIR linear �lter to
a WOS �lter, and the FIR a�ne �lter class whose structure
can adapt from an L-�lter to an FIR-�lter. In this paper we
introduce the median a�ne �lter and the center a�ne �lter
as representatives of each class, and show their performance
in two applications where the signals are non-stationary in
nature.

1. INTRODUCTION

Order-statistics have found considerable attention in robust
signal processing. The running median and L-�lters are fre-
quently cited examples of �lters based on order-statistics.
These �lters overcome most of the limitations associated
with linear �lters in non-Gaussian environments as they can
neglect outliers, closely follow signal discontinuities, and ef-
fectively preserve details in multi{dimensional imaging sig-
nals. Weighted order statistic (WOS) �lters [1], constitute
a more 
exible class of order-statistic �lters as they resem-
ble linear FIR �lters in certain respects. However, WOS
�lters are tuned to time-series obeying double-exponential
distributions and are therefore very ine�cient in processing
Gaussian or near Gaussian signals.
Several hybrid �ltering algorithms have been proposed

to overcome these limitations. All of them in some fashion
combine the sorting and linear-combination structures of
order-statistic and linear �lters, respectively. Among these,
FIR-WOS hybrid �lters [2] and permutation L` �lters have
generated interest [3]. Unfortunately, FIR-WOS hybrid �l-
ters and permutation L` have limitations of their own: the
multi-stage structure of FIR-WOS hybrid �lters typically
requires a large number of �lter coe�cients and the WOS
aspect restricts them to be smoothers. While permutation
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�lters can be designed to have a wide-range of �ltering char-
acteristics, they require many additional �lter coe�cients
compared to linear �lters and, moreover, their computa-
tional complexity increases very rapidly with the �lter win-
dow size.
In this paper we introduce the class of a�ne order-

statistic �lters, which overcome many of the limitations of
the previously cited schemes while preserving all their desir-
able characteristics. A�ne order-statistic �lters are robust,
they exploit both temporal and rank-order characteristics
of the data, and they admit real-valued �lter coe�cients
leading to a wide-range of �ltering characteristics. Further-
more, their complexity is parsimonious using as few as N+1
�lter weight coe�cients. More importantly, a�ne order-
statistic �lters have an additional property not found in
either FIR-WOS hybrid �lters or permutation �lters: they
allow data-adaptive �ltering. It is well known that data-
adaptiveness is imperative for e�ective non-stationary sig-
nal processing. A�ne order-statistic �lters accommodate
to possibly time-varying signal characteristics by adjusting
their weights automatically. In particular, it can be shown
that the behavior of a�ne order-statistic �lters can resem-
ble that of linear �lters in near-Gaussian environments and
that of order-statistic �lters in impulsive noise [4]. In am-
biguous cases a�ne order-statistic �lters operate like hybrid
structures, considering both temporal-and rank-order infor-
mation simultaneously.

2. AFFINITY MEASURES

The processing of signals typically involves the sliding of
an observation window over an input sequence, and at each
window location forming an estimate of some underlying
process. As observation samples are generally corrupted
from some combination of the acquisition, transmission,
and storage processes, the estimate of an underlying pro-
cess must consider the reliability of individual observation
samples. This is especially important for processes cor-
rupted by heavy tailed noise. For such signals, sample rank
is the most widely used and researched measure of relia-
bility. Rank, however, is a crude integer domain measure
that ignores the dispersion of samples. In the following we
de�ne a real{valued measure of reliability re
ecting sam-
ple dispersion based on the a�nity to a reliable reference
sample.
Consider a set of N real{valued observation samples

x1; x2; : : : ; xN in their natural order and ordered according
to rank x(1); x(2); : : : ; x(N), where x(1) � x(2) � � � � � x(N),
then xi corresponds to x(ri) if ri is the rank of xi.

Numerous �ltering algorithms, including median, order
statistic, �{trimmed mean, L`, and WOS �lters, rely on
ranking to identify unreliable samples. The reliance on rank
explicitly assumes that centrally ranked samples are reliable
and samples in the extremes of the ordered set are unreli-
able. For instance, an �{trimmed mean �lter considers the
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Figure 1. The a�nity function A�;
 assigns a low or high
a�nity to the sample xi for 
1 < 
2 respectively.

� smallest and largest samples unreliable and the N+1�2�
centrally ranked samples reliable. The unreliable samples
are discarded, and an estimate is formed from the reliable
samples, treating them all equally. While other order statis-
tic based methods, such as L` �lters, vary the weight given
to a sample according to its rank, the strict reliance on rank
as a characterization of reliability can lead to poor perfor-
mance [4].
An e�ective measure of reliability should re
ect not only

the rank but also the dispersion of the observation samples.
Such a measure can then be used to gage the reliability of an
observation and accordingly modify its contribution to the
estimate in the �ltering process. The approach developed
here is based on the a�nity of samples to a reliable reference
point �, for instance the sample median. The proximity of
each sample to � is checked by an a�nity function that
returns a real{value a�nity measure. Those samples close
to � are said to have a high a�nity, and those samples
distant a low a�nity.
The a�nity function A�;
 is de�ned as a mapping of the

set of observation samples to the interval [0; 1]:

A�;

: xi 7! A�;


i 2 [0; 1] (1)

for i = 1; 2; : : : ; N , where the parameters � 2 (�1;1)
and 
 2 [0;1) control the location and spread of the a�n-
ity function, respectively. In general, A�;
 is a nonlinear
function. While many forms of a�nity measures can be
adopted, we impose the following restrictions: (a) The a�n-
ity function is unimodal with mode � and assumes unity
value at the mode, (b) the a�nity function is a nondecreas-
ing function of 
, i.e., A�;
1

i � A�;
2
i for 
1 � 
2, and (c)

the a�nity function reduces to a delta function at the mode
for 
 ! 0, and is uniform for all inputs, for 
 !1.
These restrictions have the following intuitive interpreta-

tions. The parameter � de�nes a reference location. Sam-
ples proximal to this location, or having similar value, are
assigned high a�nity (� 1) while distant samples are as-
signed low a�nity (� 0). The scale on which the transition
from proximal to distant occurs is controlled by 
. For small

 (! 0), only samples equivalent to � are proximal, while
for 
 large (! 1), all samples are proximal. In terms of
observation samples, the a�nity function de�nes a neigh-
borhood around �, within which samples are considered
reliable.
In this paper we restrict ourselves to the Gaussian a�nity

function, which de�nes a smooth transition between high
and low a�nity, as shown in Fig. 1:
De�nition: For x 2 R, the Gaussian a�nity function per-
forms the mapping

A
�;


: x 7! e
�
(x��)2


 ; (2)

where � 2 (�1;1) and 
 2 (0;1).
The parameter 
, allows for tuning of the transition from

high to low a�nity and therefore modi�cation of the neigh-
borhood around � with which we associate reliability.

3. THE MEDIAN AFFINE FILTER

The median a�ne �lter forms its estimate based on N ob-
servations taking into consideration the reliability of each of

filter behavior hybrid filterlinear filter

mixed
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Figure 2. Behavior of the median a�ne �lter depending on
the local characteristics of the data.

them by an a�nity function which relates each sample to
the median, the most reliable order statistic. Since reliabil-
ity is a fuzzy measure, represented by a real-valued number,
the median a�ne �lter weights each observation to control
its impact on the estimate, rather than discarding single
samples by performing hard decisions.

De�nition: The output d̂ of the median a�ne �lter is
de�ned as

d̂


=

PN

i=1
A

i xiwi

PN

i=1
A

i wi

; (3)

where xi is the i
th temporally-ordered observation, A


i de-
notes its associated a�nity measure, and the wi's are �lter
coe�cients.
Note, that the product A


i xi approximates xi whenever
xi is located within the fuzzy neighborhood de�ned by the
a�nity function. When xi is distant from x(med), which
is the case when xi is an outlier, for instance, the prod-
uct A


i xi tends to zero. This has the following intuitive
interpretation: Whenever xi is classi�ed reliable its value is
translated into the product A


i xi � xi. If xi is considered
unreliable, its a�nity measure forces the product A


i xi to
zero, and therefore limits the impact of xi on the estimate.
The �lter coe�cients wi have a similar meaning as in

linear FIR �lters. However, in the proposed �lter, they
operate on the a�nity weighted samples rather than the
unmodi�ed observations.
We shall see soon that the values of the a�nity measures

depend on the dispersion of the data. These values can be
such that an o�set would be introduced by a simple sum-
mation of the weighted samples, therefore, a normalization
as in (3) is necessary to guarantee unbiasedness of the �lter
as a location estimator.
In the following we �nd it useful to collect the samples

with a high a�nity to the median in the set of median a�ne

observations: MAO = fxi : A


i � 1g 1.

Tunable Filter Function: The median a�ne �lter
emerges from a synthesis of the median �lter and the linear
FIR �lter. The parameter 
 controls the impact of these
structures on the behavior of the median a�ne �lter. While
a small 
 puts little weight on the natural order of the ob-
servations and strong emphasis on their rank-order, a large
value of 
 stresses the linear part and uses rank-order only
to reject outliers. In particular, we observe the following
limiting cases: For 
 ! 1 the median a�ne �lter reduces
to a normalized linear FIR �lter, and for 
 ! 0 it reduces
to the classical median �lter. For any other positive value
of 
 the median a�ne �lter behaves like an hybrid �lter,
utilizing both temporal and rank-order information simul-
taneously.

Data-adaptiveness: Suppose 
 is �xed, then the aver-
age behavior of the median a�ne �lter is governed by the
statistics of the a�nity measures [4]. The local behavior,
however, is a function of the dispersion of the current ob-
servations relative to the spread of the a�nity function.
Provided that 0 < 
 < 1, we can distinguish three cases:

1Readers familiar with fuzzy set theory may notice that the
set of median a�ne observations is actually a fuzzy set, where
the membership value is given by the a�nity measure of each
observation.
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Figure 3. Edge preservation property: (left) Assigning a�n-
ity measures to observations from a noisy step edge. (right)
Noisy (dotted) and median a�ne �ltered edge (solid) for 
1 and

2, where 
1 < 
2. The larger value of 
 results in increased
smoothing left and right of the edge.

(a) when the observations are clustered around the sample
median, all of them are contained in the setMAO, thus the
median a�ne estimator reduces to a linear FIR �lter; (b)
conversely, when the data is widely scattered, the setMAO
contains no sample but the sample median. Thus, the �lter
reduces to a classical median �lter ; (c) for the mixed case,
we observe that the setMAO contains the sample median
and the order-statistics in its proximity. Its estimate is a
linear combination of the central order statistics weighted
according to their natural order and thus clearly exhibits
hybrid character. Figure 2 gives an overview of the �lter
behavior as a function of data dispersion.
Note, that as the observation window is shifted, the a�n-

ity function is in general relocated. Thus, the characteris-
tics of the current output are determined by the dispersion
of the data relative to the relocated a�nity function, and
can, therefore, be di�erent from the previous one. Because
of this dynamic change of �lter characteristics, the median
a�ne �lter is well suited to process signals with rapidly
changing statistics.

Frequency-selectiveness: We know that for 
 !1, the
median a�ne �lter reduces to a normalized linear FIR �lter
whose frequency behavior is determined by the �lter coe�-
cients wi. Similarly, for an appropriately chosen value of 

and well-behaved data the median a�ne �lter will exhibit
the same frequency behavior as the normalized FIR �lter
with identical coe�cients. In impulsive noise, however, the
outlying samples are rejected and the �lter coe�cients ap-
ply to the reliable samples only. This results in a robust
frequency-selective behavior as illustrated in Section 5.

The median a�ne �lter can be shown to be translation
invariant and linear-trend-preserving. The last prop-
erty, however, requires the �lter to be symmetric, mean-
ing that the �lter coe�cients satisfy wi = wN�(i�1); i =

1; 2; : : : ; N and the a�nity function satis�es A�;
(�� x) =
A�;
(�+x); 
 2 [0;1); � 2 (�1;1). The proofs of these
properties are straightforward and are therefore omitted.

Edge preservation: The median a�ne �lter preserves an
ideal step edge only if 
 = 0. The blurring e�ect, intro-
duced for 
 > 0, however, is minimal and can in general
be neglected. For noisy edges the smoothing e�ect of the
median a�ne �lter prior and after the edge is superior to
that of the median �lter, as we show in the following.
A noisy, raising edge can be modeled as the sequence

fx1; x2; : : : ; xM ; xM+1 + a; : : : ; xN + ag, where a is any
positive constant, and the xi are distributed such that
minfxM+1 + a; : : : ; xN + ag >> maxfx1; x2; : : : ; xMg. For
M � (N + 1)=2 and an appropriately chosen value of 
,
the set of MAO's consists of the observations which were
taken prior to the edge (Fig. 3): MAO = fx1; x2; : : : ; xMg.
Correspondingly, for M < (N + 1)=2 we have MAO =

fxM+1+a; xM+2+a; : : : ; xN+ag. Thus, the estimate prior

to the edge is formed as d̂ �
PM

i=1
A


i wixi=

PM

i=1
A


i wi. A

similar expression can be found for the samples following
the edge. In either case, the output of the median a�ne �l-
ter is a linear combination of all samples which are located
on the same side of the edge as the sample median. Thus,
the order statistics are e�ectively exploited to attenuate the
corrupting noise, while preserving the (desired) discontinu-
ity. Figure 3 illustrates this property.

Impulse suppression: Like the median �lter, the median
a�ne �lter suppresses pulses of width less than (N + 1)=2
samples, where N is the sample size, and outputs a linear
combination of median a�ne observations. This estimate is
a linear combination of either N � (l�k) low or N � (l�k)
high order statistics, all of which are weighted according to
their temporal order. Intuitively, impulse suppression and
smoothing should be superior over a �lter structure which
uses all of the order statistics, no matter if they are part of
an undesired pulse or not (L-�lter).

4. THE CENTER AFFINE FILTER

In �lter applications where feature enhancing is needed, one
is not necessarily interested in �nding the most reliable sam-
ple, but those observations which clearly stand out from a
noisy background. A suitable �lter operation for problems
of this nature can be achieved by utilizing the a�nity func-
tion in the L-�lter framework. By positioning the mode
of the a�nity function on the center observation sample,
rather than the median, all observations are related to the
central sample. This concept is realized in the center a�ne
�lter { a representative of the FIR a�ne �lter class {, which
is de�ned as a linear combination of a�nity weighted order
statistics:
De�nition:

d̂ =

PN

i=1
A


(i)
x(i)w(i)

PN

i=1
A


(i)
w(i)

; (4)

where x(i) is the ith largest sample, A


(i)
is its associated

a�nity measure, and the w(i)'s are �lter coe�cients.
The heart of the center a�ne �lter is the product of the

ith order statistic x(i) with its associated a�nity measure.
Whenever x(i) is close to the central sample, this prod-
uct approximates x(i). If x(i) is distant from xc, however,

A


(i)
x(i) tends to zero. Thus, the center a�ne �lter forms its

estimate based on those samples which are close to the cen-
tral observation sample, provided that 0 < 
 <1. Like in
the L-�lter, the �lter coe�cients w(i) put additional weight
on each sample according to its rank.
The center a�ne �lter reduces to its basic structures for

extreme values of 
: in particular we observe that for 
 !
0 the center a�ne �lter reduces to an identity operation,
whereas for 
 !1 it emulates an L-�lter.
For a thorough analytical treatment of the center a�ne

�lter we refer the reader to [4] { its performance, however,
is illustrated in the following section.

5. APPLICATIONS

Figure 4 illustrates the performance of a median a�ne band-
pass �lter operating on a chirp signal. Figure 4a and 4b
show the clean chirp and the output of a linear FIR band-
pass �lter of order N = 44, respectively. To illustrate the
power of the median a�ne structure, the chirp has been
contaminated by alpha-stable noise (� = 1:5), as shown in
Fig. 4c (some impulses are truncated). The output of the
linear FIR and the median a�ne bandpass �lters with the
same �lter coe�cients operating on the noisy chirp are dis-
played in Fig. 4d and 4e, respectively. Clearly, the impulses



(a) Clean chirp

(b) Bandpass filtered clean chirp

(c) Chirp contaminated by impulsive noise (α−stable)

(d) Noisy chirp filtered with linear FIR bandpass 

(e) Noisy chirp filtered with median affine bandpass

Figure 4. Performance of the median a�ne bandpass on a
noisy chirp.

in the bandpass are fatal for the linear �lter. The median
a�ne �lter exhibits a robust performance within the entire
bandpass.
The feature enhancing abilities of the center a�ne �l-

ter are illustrated in Fig. 5. Figure 5a shows an inverse
synthetic aperture radar (ISAR) image of a B727. A lin-
ear �lter destroys the weak features of the plane, making
it unusable for target recognition (Fig. 5b). The L-�lter
does a better job in preserving the tail and the body of the
plane, but is not sensitive enough to keep the wings and
tip (Fig. 5c). The center a�ne �lter preserves the plane
features excellently while smoothing the heavy background
noise, as can be seen in Fig. 5d.

6. OPTIMIZATION

There are several ways to design the a�ne order-statistic
�lters. In many applications they have to obey certain fre-
quency or rank-order characteristics putting constraints on
the �lter coe�cients wi, or w(i), respectively. Here, we will
assume that these coe�cients are known. Thus the design
problem reduces to choosing a good value of 
. This choice,
however, is crucial to an e�ective behavior of the �lter.
The parameter 
 can be designed such that the a�ne or-

der statistic estimate minimizes a cost function J(
). Fre-
quently J(
) is chosen to be the expected value of the

squared error signal e = d � d̂, i.e. J(
) = Ef(d � d̂)2g.
In this case the �lter performs optimal in the mean square
error sense. A closed form expression for the expected value
does, in general, not exist. J(
), however, exhibits certain
properties [4] which allow for an adaptive, gradient based
approach as shown next:
Let 
opt be the value of 
 which minimizes J(
). To �nd


opt iteratively,

(a)  original image B727 (b) linear filter

(c) order statistic filter (d) center affine filter

Figure 5. Feature enhancing using the center a�ne �lter.

(1) start with an initial guess of 
, 
(0). Using 
(0), com-
pute the gradient of the cost function

@J(0)

@

= �2e(0)

@d̂(0)

@
(0)
: (5)

(2) Update the previous estimate:


(n+ 1) = 
(n)�
�

2

@J(n)

@
(n)
; (6)

where the stepsize � > 0 and @J(n)=@
(n) can be
shown to be

@J(n)

@
(n)
= �2e(n)

PN

i=1
wi

@A



i
(n)

@
(n)
(xi(n)� d̂(n))

PN

i=1
wiA



i (n)

; (7)

where e(n) = d(n)� d̂(n) is the present error.

This algorithm was applied to estimate 
 for the ISAR
image in Section 5: After 1000 iteration steps a 
 yielding
a result similar to the presented one was reached.
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