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ABSTRACT

It has been known for some time that it is not possible to
meet arbitrarily severe FIR �lter speci�cations with �xed
b-bit wordlength by su�ciently increasing the �lter length
N . For any given non-trivial speci�cation there is a nonzero
lower bound on the approximation error, below which it is
not possible to go, no matter how large the value of N . For
practical purposes it is even more useful to know a lower
bound for given N and b. This bound represents a �nite
wordlength FIR �lter design limit which is of theoretical
importance and has not been known so far. This paper
presents a method for computing this limit. The method is
based on a lower bound theorem and can be used to estimate
the approximation error limit in practical �nite wordlength
FIR design cases. It is also useful in the algorithm for the
optimal �nite wordlength design.

1. INTRODUCTION

There are many situations when it is not practical to use
the optimal FIR digital �lter coe�cients obtained by some
\in�nite precision"1 algorithm. One may, for example, wish
to use a �xed point DSP processor which is usually cheaper
and/or faster than a 
oating point one. The number of bits
b that can be used to represent the �lter coe�cients will in
general depend on the �lter length N , processor properties,
and on signal quantization. It is true in most cases that
�lter coe�cients with as short as possible wordlength b are
desirable. This gives more design freedom for other aspects
of system design.

Replacing the optimal �lter coe�cients with the b-bit
ones degrades �lter's frequency response. The number of
bits b must therefore not be too short or the �lter will no
longer be good enough. The designer faces the following
question: given the �lter speci�cations, what is the low-
est number of bits b that will give an acceptable �nite
wordlength �lter? The answer is a di�cult one. It is clear
that it cannot be answered by rounding the coe�cients to b
bits and computing the frequency response { rounding gives
a suboptimal �lter which can be up to 30 dB (or more) worse
than the optimal �lter. What is required is a frequency re-
sponse of an optimal b-bit �lter. Here lies the problem.
Designing an optimal b-bit �lter requires a solution of an
NP-complete approximation problem that is very di�cult
to solve [1]. Most designers would prefer to solve it only if

1The so called "in�nite precision" coe�cients are typically
32-bit 
oating point numbers. Though the 32-bit wordlength is
hardly in�nite, it is much longer than practical �nite wordlengths
that we are interested in.

there is some assurance that the result is worth investing
into a very long computation time.
This paper presents a method that gives such assurance.

It is based on a lower bound for the increase of the approx-
imation error that is caused by the b-bit constraint. This
bound is a theoretical limit on the performance of a �nite
wordlength FIR digital �lter of length N .

2. THE APPROXIMATION PROBLEM

Let us start with the usual unconstrained design problem
in which the coe�cients aj can be any real numbers. The
optimal FIR digital �lter is de�ned as a cosine polynomial
P (!) of order n

P (!) =

nX
j=0

aj cos j!; (1)

that minimizes the expression

kD � Pk1 = max
a�!�b

jW (!)(D(!)� P (!))j: (2)

The real function D(!) is the desired frequency response,
the weighting function W (!) is by de�nition real and posi-
tive, and the interval [a; b] is a subset (or a union of subsets)
of the interval [0; �]. The polynomial order n is related to
the �lter length N ; for positive symmetry n = (N � 1)=2
for odd N or n = N=2� 1 for even N . There are also sim-
ple formulas which give �lter's impulse response from the
coe�cients aj .
Let P �(!) be the optimal approximation to D(!)

P �(!)=

nX
j=0

a
�
j cos j!;

kD � P �k1�kD � Pk1; 8P (!):

(3)

Several algorithms, from linear programming to various ver-
sions of the exchange algorithm, can be used to �nd P �(!)
(ref. [2], pp.85-110). Design of optimal FIR digital �lters
has been considered a relatively easy problem ever since
Parks and McClellan showed how to apply the Remez ex-
change algorithm. The main reason for this is the following
well-known property of the optimal minimax approxima-
tion: there are exactly (n+ 2) so called extremal points in
[a; b] at which the approximation error achieves its maxi-
mum. Let f!i; i = 0; 1; � � � ; n+1g be these extremal points.
The following equations hold

W (!i)(D(!i)�

nX
j=0

a
�
j cos j!i) = (�1)ih�; i = 0; 1; � � � ; n+1;

(4)



and jh�j denotes the optimal approximation error. Equa-
tions (4) also imply

kD � P
�k1 = jh�j: (5)

Things change dramatically when a �nite wordlength
constraint is introduced. We can, without loss of generality,
make this constraint equivalent to forcing the coe�cients
faj ; j = 0; 1; � � � ; ng to be b-bit integers2. This will in most
practical cases also require a multiplication of D(!) and di-
vision of W (!) by a suitable scaling factor. The scaling is
simple and will be ignored in this paper. In other words,
D(!) and W (!) are left unchanged, and the approximating
polynomial P (!) is replaced by

P (!) =

nX
j=0

aj cos j!; aj 2 Ib; (6)

where Ib denotes a �nite set of signed integers Ib =

f�2b�1; � � � ;�1; 0; 1; � � � ; 2b�1g. The problem of �nding the
optimal integer polynomial P (!) is muchmore di�cult than
the unconstrained case, although it may not appear so at
�rst.
Notation P (!) will from here on denote a polynomial

with b-bit integer coe�cients, while P �(!) remains the op-
timal unconstrained polynomial. Since P �(!) is unique the
approximation error increases if P (!) 6= P �(!). We have

� = kD � Pk1 � kD � P
�k1 = kD � Pk1 � jh�j; (7)

where � > 0.
The problem we wish to solve can be stated like this:

what is the minimum � given the best possible integer co-
e�cients faj ; j = 0; 1; � � � ; ng? Or stated di�erently, how
much will kD � Pk1 increase relative to kD � P �k1 be-
cause of the b-bit �nite wordlength restriction. The lowest
possible � is needed to answer this question. This lowest � is
a theoretical limit on the performance of a given b-bit �nite
wordlength FIR digital �lter of length N . Let us denote it
as � and de�ne it formally as

� = min
P (!)2Ib

(�) = min
P (!)2Ib

(kD � Pk1)� jh�j: (8)

Note that we are looking over all b-bit integer polynomials,
not just one particular P (!). The optimal b-bit P (!) and
its coe�cients aj must be known in order to compute �.
These are, as mentioned in the introduction, di�cult to
compute so we wish to avoid this computation. An easily
computed lower bound for � will be derived instead.

3. LOWER BOUND THEOREM

The �rst step in our search for a lower bound of � is a
derivation of a lower bound for the approximation error in-
crease � for a single non-optimal polynomial P (!). A spe-
cial property of all functions that satisfy the Haar condition
is useful here. It says that a (n + 1)(n + 1) matrix with
elements fcos j!i; j = 0; 1; � � � ; n; i = 0; 1; � � � ; ng, where
f!i; i = 0; 1; � � � ; ng can be any set of (n+1) distinct points
from [a; b], is always non-singular (see [2], pp.97-99). This
means that there exist multipliers f�i; i = 0; 1; � � � ; n + 1g,
not all zero, that satisfy the conditions

n+1X
i=0

�i cos j!i = 0; j = 0; 1; � � � ; n (9)

2The integers are chosen for convenience. Any other �nite set
of numbers can be used instead.

for any (n + 2) points !i from interval [a; b]. It is easy to
see that equations (1) and (9) imply

n+1X
i=0

�iP (!i) = 0 (10)

for any P (!). The numbers f�i; i = 0; 1; � � � ; n + 1g have
a very important property. All are nonzero and their signs
alternate. That is

sign(�i+1) = � sign(�i); i = 0; 1; � � � ; n: (11)

The multipliers �i are available as a byproduct of the solu-
tion that gives optimal in�nite precision coe�cients a�j .
The lower bound for � when a P (!) is known is given by

the following theorem:

Theorem Let P �(!) be the optimal weighted minimax ap-
proximation to a real function D(!) on the interval [a; b]
and let P (!) be any other cosine polynomial. Then the in-
crease in approximation error is bounded by

� � max
0�i�n+1

jciW (!i)(P
�
(!i)� P (!i))j; (12)

where !i are extremal points and multipliers ci are de�ned
as

ci =

8>>>>><
>>>>>:

j
�i

W (!i)
j

n+1X
k=0
k 6=i

j
�k

W (!k)
j

if (�1)ih�(P �(!i)� P (!i)) < 0;

1 otherwise; i = 0; 1; � � � ; n + 1:

(13)
The proof is given in [3] and will not be repeated here. The
theorem can be used to compute how much the approxima-
tion error increases if P �(!) is replaced by P (!). Its appli-

cation is straightforward { the signs of (�1)ih�(P (!i) �
P �(!i)) for a given P (!) are known and cis are easily
obtained from (13). Doing this may hardly seem neces-
sary, since one can simply use equation (2) and compute
kD � Pk1 in extremal frequencies !i getting an exact in-
crease. But we are not really interested in the case of a
single P (!). Instead, we need a lower bound that holds
over all P (!) with integer coe�cients ai. It is here that the
theorem becomes quite useful.

4. DERIVATION OF LOWER BOUND

To get a lower bound for �, we must be able to express it as
a function of di�erences fa�j �aj ; j = 0; 1; � � � ; ng. This will
be done following an approach similar to the one used in
[4]. Let us �rst express the approximation error e(!i) that
corresponds to P (!)

W (!i)(D(!i)�

nX
j=0

aj cos j!i) = e(!i); i = 0; 1; � � � ; n+1:

(14)
The following system of n+2 equations with n+2 unknowns
can now be written using equations (4) and (14)

e(!i)

W (!i)
=

nX
j=0

(a
�
j�aj) cos j!i+

(�1)i

W (!i)
h
�
; i = 0; 1; � � � ; n+1:

(15)



The unknowns are a�j � aj and h�. Note that the system's
matrix is identical to the one in (4). Since (4) is already
solved, (to get a�j ) it is clear that (15) is always invertible.
In addition, the inverse can be rather easily obtained as a
byproduct of solving (4). It can be written as

a�j � aj =

n+1X
i=0

gji
e(!i)

W (!i)
j = 0; 1; � � � ; n;

h�=

n+1X
i=0

gn+1i
e(!i)

W (!i)
;

(16)

where gji are the elements of the inverted matrix. To ex-
press the di�erences a�j �aj in terms of P �(!i)�P (!i), we
note that

e(!i)

W (!i)
= P

�
(!i)� P (!i) +

(�1)i

W (!i)
h
�
: (17)

Inserting (17) into (16) gives

a�j � aj =

n+1X
i=0

gji(P
�
(!i)� P (!i) +

(�1)i

W (!i)
h
�
);

h�=

n+1X
i=0

gn+1i(P
�
(!i)� P (!i) +

(�1)i

W (!i)
h
�
):

(18)

It is easy to see that the h� term in (18) amounts to zero.
Setting aj = a�j for all j gives P (!) = P �(!) for all ! and
the following property of matrix gij is revealed

n+1X
i=0

gji
(�1)i

W (!i)
=0; j = 0; 1; � � � ; n; (19)

n+1X
i=0

gn+1i
(�1)i

W (!i)
=1: (20)

Equations (16) and (17) can be rewritten as

a
�
j � aj =

n+1X
i=0

gji(P
�
(!i)� P (!i)); j = 0; 1; � � � ; n; (21)

0=

n+1X
i=0

gn+1i(P
�
(!i)� P (!i)): (22)

Let us now multiply and divide each term in equations
(21)with (�1)iciW (!i)

a
�
j � aj =

n+1X
i=0

(�1)igji
ciW (!i)

ciW (!i)(�1)
i
(P

�
(!i)� P (!i)); (23)

0 =

n+1X
i=0

(�1)ign+1i
ciW (!i)

ciW (!i)(�1)
i
(P

�
(!i)� P (!i)): (24)

These equations contain the terms ciW (!i)(P
�(!i)�P (!i))

which appear in the theorem. Assume for a while
that the di�erences a�j � aj are known. Obviously, the

max0�i�n+1 jciW (!i)(P
�(!i) � P (!i))j will be minimal if

the signs of all the terms in (23) are equal. This gives

max
0�i�n+1

jciW (!i)(P
�
(!i)� P (!i))j

� max
0�j�n

0
BBBB@

ja�j � aj j
n+1X
i=0

j
gji

ciW (!i)
j

1
CCCCA;

(25)

which is exactly what is needed by the theorem in (12).
There is a small problem here because the sign of P �(!)�
P (!) is required by (13) in order to compute cis. But this
is easily solved since (25) assumes that the signs of all the
terms in (23) are equal. Or formally

sign(a
�
j � aj) = sign(gji(P

�
(!i)� P (!i))); (26)

for all i and j (ciW (!i) are by de�nition positive). By

multiplying both sides of (26) with (�1)ih�gji we see that
the (�1)ih�(P �(!i) � P (!i)) < 0 criterion in (13) can be

replaced by (�1)ih�gji(a
�
j � aj) < 0. For the purpose of

computation it is convenient to divide the indices i appear-
ing in (13) into two subsets.

i 2

�
IPj if (�1)ih�gji > 0;
IMj otherwise; i = 0; 1; � � � ; n+ 1:

(27)

Note that ci = 1 for i 2 IPj if a
�
j � aj > 0 and for i 2 IMj

if a�j � aj < 0. For all other cases

ci =

j
�i

W (!i)
j

n+1X
k=0
k 6=i

j
�k

W (!k)
j

; i = 0; 1 � � � ; n + 1: (28)

Let us now remove the assumption about knowing the dif-
ferences a�j � aj . This is necessary to get the lower bound
for � (equation (8)) which is valid over all integer polynomi-
als P (!). For any set of optimal coe�cients a�j there exist
integers aj+ and aj� that are the nearest upper and lower
neighbors of a�j . In other words, aj+ is an element of Ib
that gives the smallest (in an absolute sense) negative dif-
ference a�j � aj and aj� is an element of Ib that gives the
smallest positive di�erence a�j � aj . Having aj+ and aj�
and using (25), the lower bounds �+ for a�j �aj < 0 and ��
for a�j � aj > 0 can be written as

�+ = max
0�j�n

0
BBB@

ja�j � aj+jX
i2IPj

j
gji

ciW (!i)
j+
X
i2IMj

j
gji

W (!i)
j

1
CCCA ; (29)

�� = max
0�j�n

0
BBB@

ja�j � aj�jX
i2IPj

j
gji

W (!i)
j+
X
i2IMj

j
gji

ciW (!i)
j

1
CCCA : (30)

It is obvious that there are no integer coe�cients aj that
could possibly give lower deviation increase than �+ or ��.
We have thus derived the lower bound

� � min(�+; ��): (31)



5. IMPROVEMENTS AND EXPERIMENTAL
RESULTS

The lower bound (31) can be improved if we note that it
is possible to decrease denominators in (29) and (30). The
denominators decrease if there are as many as possible in-
dices i in the set IPj for �+ and in the set IMj for ��. This
eliminates the terms that include cis and thereby decreases
denominators because cis are almost always signi�cantly
lower than 1. To see this compare (22) with (10) which
shows

gn+1i = k�i; i = 0; 1; � � � ; n+ 1; (32)

where k is an arbitrary real number. Because of (11) the
signs of gn+1i alternate: sign(gn+1i+1) = � sign(gn+1i).
Equation (20) becomes

n+1X
i=0

j
gn+1i

W (!i)
j = 1; (33)

and from (28)

ci =

j
�i

W (!i)
j

n+1X
k=0
k 6=i

j
�k

W (!k)
j

=

j
gn+1i

W (!i)
j

n+1X
k=0
k 6=i

j
gn+1k

W (!k)
j

=

j
gn+1i

W (!i)
j

1� j
gn+1i

W (!i)
j
: (34)

This, together with (33), gives

n+1X
i=0

1

1 + ci
= n+ 1: (35)

Obviously, cis are small and the lower bound will improve
if they are eliminated from (29) and (30). This can be done
with the help of equation (24). By multiplying (24) with a
suitable factor f and subtracting it from equations (23) we

get new coe�cients g�ji which replace (�1)igji

g
�
ji=

(�1)igji � f(�1)ign+1i
ciW (!i)

; (36)

a
�
j � aj =

n+1X
i=0

g
�
jiciW (!i)(�1)

i
(P

�
(!i)� P (!i)): (37)

Note that all terms (�1)ign+1i have the same sign (because
of (32)). A factor fmj that makes all h�g�ji � 0 therefore
always exists. The set IPj is now empty and using (19) and
(20) the denominator of (29) becomes

n+1X
i=0

j
g�ji

W (!i)
j =

n+1X
i=0

j
(�1)igji � fmj(�1)

ign+1i

W (!i)
j = jfmj j:

(38)
The factor jfmj j should be as small as possible. The small-
est fmj that makes all h�g�ji � 0 is given by

fmj = max
i2IPj

�
gji sign(h

�)

gn+1i

�
: (39)

A similar factor fpj that makes all h�g�ji � 0 and causes set
IMj to be empty exists

fpj = min
i2IMj

�
gji sign(h

�)

gn+1i

�
: (40)

Table 1. Experimental results of lower bound e�ec-
tiveness for 12 cases.

Filter h� Opt. kD � Pk1 L.b. kD � Pk1
A15/5 0.119397 0.155174 0.142381
A25/5 0.039716 0.101226 0.061517
A35/7 0.015946 0.029838 0.020663
B15/7 0.279315 0.306864 0.292619
B25/7 0.122889 0.154227 0.132170
B35/7 0.052719 0.117187 0.065954
C15/5 0.051462 0.166736 0.120264
C25/5 0.012831 0.126398 0.082126
C35/7 0.002629 0.037575 0.012102
D15/7 0.189748 0.248478 0.219802
D25/7 0.048086 0.130607 0.078998
E25/6 0.033284 0.087922 0.046268

Using fmj and fpj the improved lower bound is

� � min

�
max
0�j�n

ja�j � aj+j

jfmjj

; max
0�j�n

ja�j � aj�j

jfpjj

�
: (41)

Additional improvements are possible; note that (41) uses
at most two of the n equations in (23) { the ones that give
maximum �� and �+. The other n � 2 equations play no
role. This is identical to saying that for these equations the
di�erences a�j � aj are equal to zero. Since this is not the
case, an improved lower bound can be obtained by adding
or subtracting equations (23).
Twelve �lters with �ve di�erent sets of frequency-domain

speci�cations, denoted A through E, were used for testing.
The frequency speci�cations are identical to those that were
used in [5]. We denote by A15/5 the �lter design problem
for speci�cation A, length 15 (8 independent coe�cients),
and b = 5 bits (sign included); similarly for A25/5, B15/7,
and so on. Table 1 shows a summary of the results, com-
paring the in�nite precision deviation h�, the optimal b-
bit deviation kD � Pk1, and the lower bound number for
kD � Pk1 that is computed with the help of (41).
The lower bound (41) was also implemented in a pro-

gram for optimal �nite wordlength FIR �lter design. The
computing time was, depending on the �lter speci�cations,
between 3 and 4 times lower than in the otherwise identical
program which does not use the lower bound.
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