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ABSTRACT

This paper studies the applicability and limitations of the

McClellan transformation method and, as a result, extends

this method so that new types of one-dimensional �lters can

be transformed and new types of multi-dimensional �lters

can be designed. For this purpose, a new expression for the

frequency response of an arbitrary one-dimensional �lter is

derived in terms of Chebyshev polynomials and other in-

troduced polynomials satisfying recurrence formulae. The

main objective is to identify which prototype �lters can be

transformed, determine what types of symmetry can be de-

signed, and present procedures for transforming the new

identi�ed prototypes as well as rules for achieving the pos-

sible symmetries.

1. INTRODUCTION

The design of optimal (equiripple) multi-dimensional FIR

�lters is much more involved than the one-dimensional de-

sign problem. Since the direct design and realization of opti-

mal multi-D �lters is expensive, transformations have been

used to e�ciently design and realize near-optimal multi-D

�lters.

A very e�cient and popular transformation method is

due to McClellan [1]. This technique transforms a 1-D pro-

totype �lter H(!) into a 2-D �lter H(!1; !2) by a change

of variables. The transformation is performed by using a

transformation function F (!1; !2) which would map the

prototype �lter to the desired 2-D �lter. The McClellan

transformation method allows the designer to control the

error norm and to preserve the symmetry properties of the

desired 2-D �lters. In practice, it results in very good

�lters that are close to optimal. However, in the origi-

nal McClellan transformation method, the prototype �lter

H(!), the transformation function F (!1; !2), and the 2-

D designed �lter H(!1; !2) are restricted to be real and

positive-symmetric [1]. This paper studies the applicabil-

ity and limitations of the McClellan transformation method

and, as a result, extends this method so that new types of

one-dimensional �lters can be transformed and new types

of multi-dimensional �lters can be designed. Design pro-

cedures are presented for the design of complex and real,

positive- and negative-symmetric, multi-D �lters by trans-

forming odd- and even-length one-D prototype �lters with

complex (or real) coe�cients.

2. IDENTIFICATION OF TRANSFORMABLE
PROTOTYPE FILTERS

This section identi�es the class of prototype �lters that

can be mapped into multi-dimensional �lters by means of a

transformation function. The discussion emphasizes the use

of \well-behaved" transformation functions, i.e., functions

that do not distort but exactly map the values of the pro-

totype frequency response to corresponding contours in the

multi-dimensional frequency domain. Well-behaved map-

pings are important because they allow the designer to con-

trol the values of the designed multi-dimensional �lter and,

therefore, control the approximation error norm.

A general complex-valued one-dimensional FIR �lter of

length N , with the coe�cients fhk; k = K1; : : : ; K1 +N �

1g, has a frequency response H(!) given by

H(!) =

K1+N�1X
k=K1

hke
�jk!

(1)

Alternatively, it is shown that H(!) can be expressed in

terms of Chebyshev and other related polynomials sat-

isfying recurrence formulae. In fact, rewriting e�j!k as

cos (k!) � j sin (k!) , the functions cos (k!) and sin (k!)

can be expressed as

cos (k!) = Tk[cos!] (2)

and

sin (k!) =

�
Sk[sin!]; k odd

Sk[sin!] cos!; k even
(3)

where Tk[x] is the well-known kth Chebyshev polynomial of

degree k in x and Sk[x] is an introduced polynomial which

is shown to satisfy the following recurrence formula:

Sk[x] =

�
2Sk�1[x](1� x

2)� Sk�2[x]; k odd

2Sk�1[x]� Sk�2[x]; k even

S0[x] = 0

S1[x] = x (4)

Note that Sk[x] is a polynomial whose degree is k for k odd,

and k � 1 for k even. Sk[x] is also shown to be related to

Tk[x] as follows:

Sk[x] =

�
(�1)mT2m+1[x]; k = 2m+ 1

2(�1)m�1
Pm

p=1
T2p�1[x]; k = 2m 6= 0

(5)



Now, using (2), H(!) can be rewritten as

H(!) =

K1+N�1X
k=K1

ckTjkj[cos!] +

K1+N�1X
k=K1

k odd

(
k

jkj
)skSjkj[sin!]

+

K1+N�1X
k=K1

k even

(
k

jkj
)skSjkj[sin!] cos!: (6)

Equation (6) indicates that two real transformation func-

tions are needed to transform an arbitrary �lter by means

of the two substitutions�
cos!  ! F1(!1; !2)

sin!  ! F2(!1; !2)
(7)

where the mapping functions F1(!1; !2) and F2(!1; !2)

must be the frequency responses of 2-D FIR �lters with

�1 � F1(!1; !2) � 1 and �1 � F2(!1; !2) � 1. Fur-

thermore, in order to preserve the characteristics of the

one-dimensional prototypeH(!), F1(!1; !2) and F2(!1; !2)

must satisfy the following additional constraint

F
2
1 (!1; !2) + F

2
2 (!1; !2) = 1: (8)

Although arbitrary prototype �lters (with no symmetries)

can be transformed, it is shown that the the required con-

straints on the mapping functions limit the choice of ad-

missible mappings and, therefore, the �lters that can be

designed to only those with colinear isopotentials. In this

case, a broader selection of transformation mappings with

arbitrary contours could be obtained if the constraint (8)

is not satis�ed exactly but is satis�ed in an approximative

sense as described brie
y below.

Transforming Arbitrary Prototype Filters The follow-

ing procedure can be used for transforming an arbitrary

prototype (with no exploitable symmetries). The substitu-

tion (7) corresponds to a transformation of variables which

maps the 1-D frequency ! to a contour in the 2-D frequency

space (!1; !2). Let the desired contour mapping be

! = Cd(!1; !2) (9)

where Cd(!1; !2) is a function representing the desired

contour in the 2-D space. Then, the mapping func-

tions F1(!1; !2) and F2(!1; !2) of (7) could be con-

structed such that they best approximate cos (Cd(!1; !2))

and sin (Cd(!1; !2)), respectively, relative to some error

norm [2]. It should be noted that F1(!1; !2) and F2(!1; !2)

are real-valued FIR frequency responses . Note that, in this

case, the values of the prototype frequency response may be

altered by the mapping process. This is due to the fact that

the constraint (8) is not exactly satis�ed.

Exactly Transformable Prototype Filters Using (6), it is

shown that well-behaved mapping functions, which do not

alter but exactly map values of the prototype frequency re-

sponse to general (arbitrary shape) contours in the multi-D

frequency domain, can be used only with a limited class

of prototype �lters satisfying some symmetry conditions.

Well-behaved transformation functions are important be-

cause they allow the designer to easily control the values

of the designed �lter and to control the error norm. The

well-behaved transformation functions are real-valued re-

sulting in multi-dimensional �lters whose rectangular re-

gions of support have odd-length sides. Even-length pro-

totype �lters can be transformed, in some special cases, to

produce 2-D �lters with a rectangular region of support

having even-length sides but with very restricted (not arbi-

trary) contours [3].

The required symmetry conditions on the prototype �l-

ter are derived for both odd- and even-length, complex and

real prototype �lters using expression (6) for the proto-

type frequency response. From the previous discussion, it

can be easily seen that well-behaved mappings, approxi-

mating arbitrary contours, can only be used in the cases

where (6) reduces to an expression in terms of only one of

the trigonometric functions cos() and sin(). The reduction

of (6) is done by considering all possible combinations of the

three summation terms and using the derived relation (5).

The corresponding prototype can then be mapped into a

multi-D �lter by replacing the trigonometric function (cos()

or sin()) by any real mapping function F satisfying jF j � 1.

The exactly transformable odd-length prototypes, with no

restrictions placed on the shape of the generated contours,

were found to be of the form

H(!) =

(N�1)=2X
n=0

cnTn[x(w)] (10)

where x(!) = cos(!) or sin(!). Similarly, the exactly trans-

formable even-length �lters were found to be of the form

H(!) = e
�j!=2

x(!)

(N=2)�1X
n=0

cnTn[s(2(x(!))
2
� 1)] (11)

where(
x(!) = cos(!=2) and s = 1 (> 0 sym.)

or

x(!) = sin(!=2) and s = �1 (< 0 sym.)
(12)

In this case, the design procedure can be simply described

as follows. The transformed multi-D �lter is obtained by

replacing x(!) in (10) or (11) by a mapping function F

that approximates the contours of the desired multi-D �l-

ter. Note that the coe�cients cn in (10) and (11) are not

restricted to be real but are complex in general.

3. IDENTIFICATION OF ACHIEVABLE
MULTI-D SYMMETRIES

This section considers all possible centro and quadrant

symmetries that can be achieved using the transforma-

tion method and derives rules for selecting the appropriate

pair of prototype �lter and transformation mapping that

would result in the desired 2-D symmetries. The exactly

transformable prototype �lters (10) and (11) are consid-

ered for this purpose. Generalization to higher dimensions

can be easily obtained by increasing the dimensionality of

the transformation function.

For 2-D complex FIR �lters whose impulse response

h(n1; n2) is non-zero over a rectangular region of support



having odd-length sides, only the following four types of

centro and quadrant symmetries are possible in general:

Positive centrosymmetry: h(n1; n2) = h(�n1;�n2)

For any prototype �lter of the form (10) or (11), a su�cient

condition for obtaining a positive centro-symmetric 2-D �l-

ter H(!1; !2) is to have a positive centro-symmetric map-

ping F (!1; !2) = F (�!1;�!2). Positive centro-symmetric

2-D �lters can also be obtained by using mappings with

negative symmetries

F (!1; !2) = �F (�!1;�!2) (13)

or �
F (!1; !2) = �F (�!1;�!2)

F (�!1; !2) = �F (!1;�!2)

�
(14)

where 0 � !1; !2 � �. However, in these cases, the proto-

type �lter has to have an odd length and be positive sym-

metric with respect to both ! = 0 and ! = �=2. This latter

requirement is needed to eliminate the odd-degree Cheby-

shev polynomials in (10).

Negative centrosymmetry: h(n1; n2) = �h(�n1;�n2)

From the discussion above, it can be deduced that F (!1; !2)

cannot be positive centro-symmetric in this case. For any

prototype �lter of the form (10) or (11), a negative centro-

symmetric complex 2-D �lter is obtained by using a negative

centro-symmetric mapping F (!1; !2) = �F (�!1;�!2). In

addition, if an odd-length prototype �lter is used, it needs

to be positive symmetric with respect to ! = �=2 (! = 0)

and negative symmetric with respect to ! = 0 (! = �=2).

This latter requirement eliminates the even-degree Cheby-

shev polynomials in (10). No restrictions are placed on the

even-length prototype �lters.

Positive quadrant symmetry: h(n1; n2) = h(�n1;�n2) =

h(�n1; n2) = h(n1;�n2) This case corresponds to a

positive centro-symmetric �lter with an additional quad-

rant symmetry constraint. For any prototype �lter of the

form (10) or (11), a su�cient condition for designing a 2-

D �lter which is positive quadrant symmetric is to have

a positive quadrant symmetric transformation function

F (!1; !2) = F (�!1;�!2) = F (�!1; !2) = F (!1;�!2).

With an odd-length �lter (10) having c2m+1 = 0, other

types of symmetries are possible for F (!1; !2), i.e.,

F (!1; !2) = s1F (�!1; !2) = s2F (�!1;�!2)

= s3F (�!1; !2) (15)

where s1, s2, and s3 are either �1 or 1 and are not neces-

sarily equal.

Negative quadrant symmetries In this case, the follow-

ing symmetry properties are considered for the 2-D �lter

H(!1; !2):

H(!1; !2) = s1H(�!1; !2) = s2H(�!1;�!2)

= s3H(�!1; !2) (16)

where s1, s2, and s3 are either �1 or 1 with exactly two of

them equal to �1. Such 2-D symmetries are obtained by

using a transformation function F (!1; !2) with the same

type of symmetry as the desired 2-D �lter, i.e.,

F (!1; !2) = s1F (�!1; !2) = s2F (�!1;�!2)

= s3F (�!1; !2) (17)

where s1, s2, and s3 are as in (16). In addition, if an

odd-length prototype (10) is used, it needs to have zero

even-indexed coe�cients, i.e., fc2mg = 0. No restrictions

are placed on the even-length prototype �lters.

4. DESIGN EXAMPLE

This example corresponds to designing a bandpass, negative

centro-symmetric 2-D �lter, whose passbands are centered

on the !1 = �!2 line, by transforming an appropriate odd-

length 1-D prototype. From the rules stated in the previous

section, a negative centro-symmetric mapping F (!1; !2) is

needed and the odd-length 1-D prototype �lter needs to be

negative symmetric. So, a �rst-order negative-symmetric

mapping of the general form

F (!1; !2) = A sin(!1) +B sin(!2) + C sin(!1) cos(!2)

+D cos(!1) sin(!2) (18)

is used. The odd-length 1-D prototype �lter is designed to

approximate the following ideal speci�cations:

D(!) =

8><
>:

1; (
�

2
� !p) < ! < (

�

2
+ !p)

�1; (�
�

2
� !p) < ! < (�

�

2
+ !p)

0; otherwise

(19)

where !p controls the passband cuto� frequency and is

such that 0 < !p < (�=2). Figure 1 shows the proper-

ties of the optimal prototype �lter with a length N = 31

and !p = 0:1�. This optimal �lter was obtained using the

multiple-exchange ascent algorithm of [4]. To determine

the parameters of the �rst-order mapping F (!1; !2), the

following desired mapping constraints are applied:

(!;!) ! 0 (20)

(!;�!) ! ! (21)

where (20) maps ! = 0 to the line !1 = !2, and (21) maps

the prototype �lter to the line !2 = �!1. The resulting

mapping function is given by

F (!1; !2) = 0:5(sin!1 � sin!2): (22)

The contours of F (!1; !2) are shown in Fig. 2, and the

frequency response of the designed 2-D bandpass �lter is

shown in Fig. 3.
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Figure 1. Prototype �lter: N = 31 and !p = �=10. (a) FIR �lter magnitude response (linear scale). (b) FIR
�lter magnitude response (in dB).
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Figure 2. Contours of the negative centro-symmetric sub�lter.
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Figure 3. Frequency response of the designed 2-D �lter, !p = �=10.


