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ABSTRACT

In this paper the approximation of a complex-valued spec-

ification by the frequency response of a 2-D IIR separa-
ble-denominator (SD) digital filter is considered. The ap-
proximation problem is transformed into an equivalent one,
where a real-valued 2-D IIR SD digital filter with some ad-
ditional characteristics has to be determined that approxi-
mates a given real-valued 2-D FIR digital filter. A theorem
is presented that helps to reduce the number of parameters
in the FIR-to-IIR approximation problem and a procedure
to solve the problem numerically is given.

1. INTRODUCTION

In recent years a variety of techniques for the design of 2-
D SD digital filters (SDDFs) has been developed. Most of
these techniques are spatial domain approaches, where a
given 2-D impulse response has to be approximated by the
impulse response of a SDDF (e.g. [1]-[3]). Frequency re-
sponse specifications have also been used for the design of
SDDFs. But, except for some special cases (e.g. [4]), only
the approximation of magnitude specifications has been
considered. The progression of the phase was ignored.

In this paper, we are concerned with the general case of
the frequency domain approximation, i.e. with the approx-
imation of a complex-valued 2-D function Hy (ejnl,ej%)
by the transfer function H(z1,2) of a SDDF on z; = e
(—Qa < Q < Qi < ) (¢ = 1,2). Our approximation
procedure is an extension of the results presented in [5] to
2-D SD systems and is based on a transform introduced by
S. Darlington [6] and a theorem due to J. L. Walsh [7, §].

First, by applying the well known bilinear transform
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where T; = 2tan 2 (i = 1,2), the interval —Q;s < Q; <
Q1 on the unit circle z; = eI of the zi-plane is mapped
into the interval —1 < w; < 1 on the imaginary axis p; = jw;
of a p;-plane (¢ = 1,2) and vice versa. The specification
Ho (eml,em?) is transformed into Ho(jw:,jws2) by substi-
tuting Q; = 2 arctan wizT" (i=1,2)in Ho (ejnl,ejn2). Now
we have to find a stable continuous-time SD filter H (p1, p2)
that approximates Ho(jw1,jw2) for p; = jw; (-1 < w; < 1)
(i=1,2).

In the next section it is shown how this approximation
problem can be transformed into the problem of finding
a real-valued SDDF with some additional characteristics
that approximates a given real-valued 2-D FIR digital fil-
ter. Once a solution to this approximation problem is found,
H (p1, p2) can easily be calculated, and the interesting trans-
fer function H(z1,22) can be obtained by substituting p;
(1 =1,2) in H(p1,p2) with eq. (1).

2. THE DARLINGTON TRANSFORM

In [6] the Darlington transform was used for the design of
(1-D) electrical networks. Its generalization to 2-D systems
is given by
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With eq. (2) the p;-planes are transformed into (; -planes
(i = 1,2). The characteristics of this transform is discussed
briefly in the following. The index “” is omitted for simplic-
ity. To demonstrate the one to one correspondence between
the p-values and the (-values we introduce a two-sheet Rie-
mann surface as depicted in Fig. 1. The essential properties
of the transform are summarized in Table I. The two sheets

Table 1. Correspondences of the Darlington Trans-
form.

Riemann p-surface

Rep <0 (1% sheet)
Rep <0 (2°¢ sheet)
Rep >0 (1% sheet)
Rep >0 (2" sheet)

¢(-plane
[(|] <1 and Re( >0
|| >1 and Re( <0
|| >1 and Re( >0
|| <1 and Re( <0

of the Riemann surface are connected in a crosswise manner
along the imaginary axes from p = j to p = joo and from
p = —j to p = —joo, respectively, as indicated in Fig. 1 by
edges. The interval p = jw (—1 < w < 1) in the first sheet
of the p-surface is transferred to the right half (Re{ > 0) of
the unit circle || = 1. The interval p = jw (-1 <w <1) in
the second sheet of the p-surface is transferred to the left
half (Re¢ < 0) of the unit circle |¢| = 1.

Denoting the points on the unit circle in the (;-plane by
G = elvi (=7 < ¢; < m) we obtain from (2) with p; = jw;

wi=sing; (i=1,2) (3)
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Figure 1. Mapping of the Riemann p-surface onto
the (-plane by the Darlington transform.

With this substitution the specification Ho(jwi,jw2) is
transformed into hg (ej‘"1 , ej“) = Ho(jsin p1,jsin p2).
This function is periodic in ¢; and @2 with period 27. Thus,
it can be expanded in a Fourier series as
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and it can be shown, that the 7,, are real. This is a
consequence of the fact that Ho(jw1,jw2) must satisfy cer-
tain symmetry conditions in order that it can be regarded
as the frequency response of a real system. Substituting
e =: ¢ (i = 1,2) in eq. (4), we obtain a real-valued
function ho(¢1,¢2). It can be written as
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where

This real-valued function is analytic in |(1] > 1 A (2] > 1
and continuous in (1] > 1 A[¢2] > 1. In view of eq. (5)
and the relationship between ho(e'?!,e’¥?) and Ho(jw1, jw2)

it represents the originally given complex-valued frequency
response specification. If it is approximated by a real, ra-
tional, SD function
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approximates ho((1,¢2) on & = €% (—w < p; < 7) (i =
1,2). In view of eq. (8) there must exist a representation of

h(¢1,¢2) as
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It can easily be determined, since h({1,(2) is a rational
function and with the substitution eq. (2) we finally ob-
tain a real, rational, SD transfer function H(p1,p2) that ap-
proximates the given specification Ho(jw1,jw2) on p; = jw;
(—1<wi <1) (i=1,2).

The poles of H(p1,p2) must lie in Re p; < 0 (i = 1,2).
These stability conditions impose constraints on the poles
of h(¢1,¢2), eq. (8). Regarding the correspondences of the
Darlington transform, given in Table I, we see that the poles
of h((1,¢2) must lie in one of the two domains {(||¢i] <
1 and Re(; > 0} or {¢i||¢i| > 1 and Re(; < 0} (¢ =1,2).
To fulfill these conditions, the poles of ®((1,(2), eq. (7),
must be chosen appropriately. Since the function ®((1,(2)
should have the same region of analyticity (|¢1] > 1A |(2| >
1) as f(C1,¢2), eq. (6), its poles must satisfy |a;| < 1 A
Rea; >0 (¢t =1,2,...,N;) and |Bi| < 1ARefB:i >0 (i =
1,2,...,N2). That is, f({1,¢2) has to be approximated by
a 2-D SD stable IIR digital filter transfer function, whose
poles must have positive real part.

Taking a finite sum of eq. (6) yields

(G, C2) =ZZ v G765 (10)
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which is a 2-D FIR transfer function close to f({1,(2), pro-
vided L; and L2 are chosen sufficiently large. We now have
the problem of approximating a 2-D FIR transfer function
by a 2-D SD IIR transfer function. One could try to solve
it e.g. by using the approach given in [3]. But there is no
guarantee that the poles of the function ®((1,(2), eq. (7),
thus obtained, all have positive real parts, as required. To
avoid this difficulty, we solve the problem by a constrained
minimization procedure, as described in section 4. The nec-
essary calculations can be reduced by a considerable amount
with the help of a theorem, presented in the next section.



3. THE THEOREM OF WALSH

For the approximation of 1-D functions, that are analytic in
a certain region, by rational functions in the sense of least
squares, J. L. Walsh has given a theorem [7], that helps to
reduce the number of parameters by imposing constraints
on the numerator coefficients. The generalization of this
theorem to the 2-D case was made in [8] and is given below.

Theorem 1 Among all possible functions ®((1,(2) of the
form eq. (7), with prescibed poles a; (i =1,2,...,N1) and
Bi (1 =1,2,...,N2), that are fized and located in (x| < 1
(k = 1,2), that one is the best approzimation in the sense
of least squares to f((1,C2), analytic in |(i] > LA (2| > 1
and continuous in (1| > 1 A |(2| > 1, that interpolates to
f(C1,¢2) in all points of the set
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These interpolation conditions can be used to formulate
a uniquely solvable set of (N1 + 1)(N2 + 1) linear equations
for the (N1 +1)(IN2 + 1) numerator coefficients of ®((1, ¢2),
as follows:

The interpolation points are denoted as

= {(Cl,@)

1 .
10 = 00, gliZE (t=1,2,...,Ny) (11)
and
G20 =00, (25 = F (] =12,.. ~:N2)~ (12)
J

We assume, that the number of distinct points in the set (x;
(l = 0,1,...,Nk) is 7k, where 1 < rp < Np +1 (k = 1,2).
Let these distinct points, after a possible renumbering of

the indices, be the points (x; (¢ = 0,1,...,7% — 1), which
means, that
(13)
and
Cri € {Ck,0,Chi1s oo+ Chrp—1} (@ =7k, e t1,..., Ni) (14)

are valid (k = 1,2). Now, denoting the multiplicity of each
point (ki (¢ = 0,1,...,7, — 1) by sg; (k = 1,2), the inter-
polation conditions read
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(p=0,1,...,81:.—1; v=0,1,...,825 — 1)
(i=01,....,r—1 j=01...,m—1). (1)

Egs. (15) describe a set of (N1 +1)(N2 + 1) linearly inde-
pendent equations, which are linear in the (N1 4+ 1)(N2 +1)
unknown numerator coefficients. The solution of this set of
equations is unique. Therefore, the numerator of ®((1,(2)
is uniquely determined by the poles.

A direct application of egs. (15) is impractical. In the
next section, it is shown, how in our case, where we take
ft(¢1,¢2), eq. (10), as the function to be approximated, the
numerator coefficients of ®((1,(2) can be calculated by us-
ing egs. (15) implicitly.

4. THE FIR APPROXIMATION PROCEDURE

Let the unknown numerator of ®(({1, (2), eq. (7), be denoted
P((1,¢2) and the denominator polynomials by Q(Cx)
and let the Qx((x) be given as

Ny
= Z Qkv Cl;u
v=0

Then the unique numerator polynomial P((1,(2), that sat-
isfies egs. (15), can be calculated in two steps:
First we determine a polynomial

(gro=1) (k=12).  (16)
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such that the rational function

C(Ch C2)
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interpolates to f:((1,¢2), eq. (10), w.r.t. {1 in the sense
of the theorem. This means, that the difference function
A(<1,<2) = ft(<1;<2) — g(<1,<2) vanishes in the pOiIltS
¢1 = ¢ (2 =0,1,...,N1), eq. (11), for arbitrary (.

a consequence C((1,(2) must satisfy

9(¢1,¢2) ==

Fi(G, 2)Q1(C1) — C(Cry G2) = T MV Qu (¢ )Rl(cl,%))
19
where
Li—1 Lo
Ri(GyG) =) > e (20)
i=0 j=0

After some manipulation of eq. (19), a simple procedure
to calculate Ri((1,¢2) and C((1,¢2) can be derived. It re-
quires a digital filter operation to get R1(C1,¢2) and then
C(¢1,¢2) can be obtained from eq. (19). Details are omitted
for brevity.

In the second step, P((1,(2) is obtained from C((1,(2),
eq. (17), as follows. We require, that the rational function

P(Ch C2)
Q2(¢2) 1)

interpolates to C((1,(2), eq. (17), w.r.t. {2 in the sense
of the theorem. This means, that the difference function
A(Cl,@) := C(C1,¢2) — v(C1,¢2) vanishes in the points
C2=¢(25 (3 =0,1,...,Na2), eq. (12), for arbitrary (1. As a
consequence P((1,(2) must satisfy

C(C1,62)Q2(C2) — P(C1,C2) = ¢ M VQu(¢G R (G, c(a),)
22
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From eq. (22) R2(¢1,¢2) and P(¢1,¢2) can be obtained in
the same way as R1((1,(¢2) and C((1,¢2) from eq. (19).
Now consider the difference function

A(C1,C2) = felC1,G2) — 2(C1,C2), (24)
which can be written as

_ X A(¢1,¢2)
A(C17C2) - A(Cl,C2) + Ql((l) . (25)

It vanishes in the interpolation points ((1,(2) € S, which
indicates, that P((1,(2) has been determined such that
®((1,¢2), eq. (7), satisfies the interpolation conditions
egs. (15).

We now take the coefficients gi, (v =1,2,...,Ni) of the
denominator polynomials Q (k) (k = 1,2), eq. (16), as the
variables of an iterative minimization procedure, where we
try to minimize the l>-norm of A({1,¢2). Using egs. (19)
and (22), we can show that the square of this [2-norm can
be calculated by
9
R»(C1,62)

QR1(¢1) (26)
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In each iteration step, the polynomials C'(¢1,(2), R1(¢1, ¢2),
R>((1,¢2) and P(¢1,(2) are obtained as shown above. Note
that we do not need to know the roots of Qr((k) (K =
1,2) explicitly. But it must be ensured, that they lie in
the unit circle and have positive real parts. This can be
achieved by taking the requirements, that the Q(Cx) are
Schur polynomials and that the Qr(—(x) simultaneously
are Hurwitz polynomials (k = 1,2), as constraints.

5. AN EXAMPLE
With the described procedure a SDDF H(z1,22) with
N1 = N> =15 was designed, whose frequency response ap-
proximates the specification Hy (ele,ejQ2) = e~ (1 92)* +
j O3 (sinQ2)? in the frequency domain (047 < Q1 <
0.4m; —0.7m < Qs <0.77). Fig. 2 shows the real and imag-
inary parts of the specification Hy (eml,em2) and of the

frequency response of fI(zl, z2). The approximation error

1
Q11 Q21 2
! A (oI i) |2
ei= | ——r A (™, e'%) | ded |
Q11001
0 0
where A (eJQl,eJQ2) := Hp (eJQl,eJQ2 - H (eJQl,eJQ2),

Q11 =047 and Q21 = 0.77, was e = 0.0465.

6. CONCLUSION

A procedure for the design of SDDFs was described. The
approximation of a given complex-valued frequency re-
sponse specification was achieved with the help of the bilin-
ear transform, the Darlington transform and a constrained
minimization procedure. The problem was reformulated as
an FIR-to-IIR approximation problem, whose solution was
considerably simplified by a theorem of Walsh. An example
was presented to show the applicability of our approach.
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Figure 2. Real- and imaginary parts of the given
specification and of the frequency response of the
designed SDDF.
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