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ABSTRACT

In this paper the approximation of a complex-valued spec-

i�cation by the frequency response of a 2-D IIR separa-

ble-denominator (SD) digital �lter is considered. The ap-

proximation problem is transformed into an equivalent one,

where a real-valued 2-D IIR SD digital �lter with some ad-

ditional characteristics has to be determined that approxi-

mates a given real-valued 2-D FIR digital �lter. A theorem

is presented that helps to reduce the number of parameters

in the FIR-to-IIR approximation problem and a procedure

to solve the problem numerically is given.

1. INTRODUCTION

In recent years a variety of techniques for the design of 2-

D SD digital �lters (SDDFs) has been developed. Most of

these techniques are spatial domain approaches, where a

given 2-D impulse response has to be approximated by the

impulse response of a SDDF (e.g. [1]-[3]). Frequency re-

sponse speci�cations have also been used for the design of

SDDFs. But, except for some special cases (e.g. [4]), only

the approximation of magnitude speci�cations has been

considered. The progression of the phase was ignored.

In this paper, we are concerned with the general case of

the frequency domain approximation, i.e. with the approx-

imation of a complex-valued 2-D function Ĥ0

�
ej
1 ; ej
2

�
by the transfer function Ĥ(z1; z2) of a SDDF on zi = ej
i

(�
i1 � 
i � 
i1 < �) (i = 1; 2). Our approximation

procedure is an extension of the results presented in [5] to

2-D SD systems and is based on a transform introduced by

S. Darlington [6] and a theorem due to J. L. Walsh [7, 8].

First, by applying the well known bilinear transform

zi =
1 + pi

Ti
2

1 � pi
Ti
2

or pi =
2

Ti

zi � 1

zi + 1
(i = 1; 2); (1)

where Ti = 2 tan 
i1

2
(i = 1; 2), the interval �
i1 � 
i �


i1 on the unit circle zi = ej
i of the zi-plane is mapped

into the interval �1 � !i � 1 on the imaginary axis pi = j!i
of a pi-plane (i = 1; 2) and vice versa. The speci�cation

Ĥ0

�
ej
1 ; ej
2

�
is transformed into H0(j!1; j!2) by substi-

tuting 
i = 2arctan !iTi
2

(i = 1; 2) in Ĥ0

�
ej
1 ; ej
2

�
. Now

we have to �nd a stable continuous-time SD �lter H(p1; p2)

that approximates H0(j!1; j!2) for pi = j!i (�1 � !i � 1)

(i = 1; 2).

In the next section it is shown how this approximation

problem can be transformed into the problem of �nding

a real-valued SDDF with some additional characteristics

that approximates a given real-valued 2-D FIR digital �l-

ter. Once a solution to this approximation problem is found,

H(p1; p2) can easily be calculated, and the interesting trans-

fer function Ĥ(z1; z2) can be obtained by substituting pi
(i = 1; 2) in H(p1; p2) with eq. (1).

2. THE DARLINGTON TRANSFORM

In [6] the Darlington transform was used for the design of

(1-D) electrical networks. Its generalization to 2-D systems

is given by

pi =
1

2

�
�i �

1

�i

�
(i = 1; 2): (2)

With eq. (2) the pi-planes are transformed into �i -planes

(i = 1; 2). The characteristics of this transform is discussed

briey in the following. The index \i" is omitted for simplic-

ity. To demonstrate the one to one correspondence between

the p-values and the �-values we introduce a two-sheet Rie-

mann surface as depicted in Fig. 1. The essential properties

of the transform are summarized in Table I. The two sheets

Table 1. Correspondences of the Darlington Trans-

form.

Riemann p-surface �-plane

Re p < 0 (1st sheet) j�j < 1 and Re � > 0

Re p < 0 (2nd sheet) j�j > 1 and Re � < 0

Re p > 0 (1st sheet) j�j > 1 and Re � > 0

Re p > 0 (2nd sheet) j�j < 1 and Re � < 0

of the Riemann surface are connected in a crosswise manner

along the imaginary axes from p = j to p = j1 and from

p = �j to p = �j1, respectively, as indicated in Fig. 1 by

edges. The interval p = j! (�1 � ! � 1) in the �rst sheet

of the p-surface is transferred to the right half (Re � � 0) of

the unit circle j�j = 1. The interval p = j! (�1 � ! � 1) in

the second sheet of the p-surface is transferred to the left

half (Re � � 0) of the unit circle j�j = 1.

Denoting the points on the unit circle in the �i-plane by

�i = ej'i (�� < 'i � �) we obtain from (2) with pi = j!i

!i = sin'i (i = 1; 2) (3)



Figure 1. Mapping of the Riemann p-surface onto

the �-plane by the Darlington transform.

With this substitution the speci�cation H0(j!1; j!2) is

transformed into h0(e
j'
1 ; ej'2) := H0(j sin'1; j sin'2).

This function is periodic in '1 and '2 with period 2�. Thus,

it can be expanded in a Fourier series as

h0(e
j'
1 ; e

j'
2) =

1X
�=�1

1X
�=�1

�� e
�j�'

1e
�j�'

2 ; (4)

and it can be shown, that the �� are real. This is a

consequence of the fact that H0(j!1; j!2) must satisfy cer-

tain symmetry conditions in order that it can be regarded

as the frequency response of a real system. Substituting

ej'i =: �i (i = 1; 2) in eq. (4), we obtain a real-valued

function h0(�1; �2). It can be written as

h0(�1; �2) = f(�1; �2) + f(�
1

�1
; �2) +

+f(�1;�
1

�2
) + f(�

1

�1
;�

1

�2
); (5)

where

f(�1; �2) =

1X
�=0

1X
�=0

~�� �
��
1 �

��
2 : (6)

This real-valued function is analytic in j�1j > 1 ^ j�2j > 1

and continuous in j�1j � 1 ^ j�2j � 1. In view of eq. (5)

and the relationship between h0(e
j'
1 ; ej'2) andH0(j!1; j!2)

it represents the originally given complex-valued frequency

response speci�cation. If it is approximated by a real, ra-

tional, SD function

�(�1; �2) =

N
1P

i=0

N
2P

j=0

pij �
�i
1 �

�j
2

N
1Q

i=1

(1� �i�
�1
1 )

N
2Q

j=1

(1� �j�
�1
2 )

; (7)

then the function

h(�1; �2) := �(�1; �2) + �(�
1

�1
; �2)+

+�(�1;�
1

�2
) + �(�

1

�1
;�

1

�2
) : (8)

approximates h0(�1; �2) on �i = ej'i (�� < 'i � �) (i =

1; 2). In view of eq. (8) there must exist a representation of

h(�1; �2) as

h(�1; �2) = H

�
1

2
(�1 �

1

�1
);
1

2
(�2 �

1

�2
)

�
: (9)

It can easily be determined, since h(�1; �2) is a rational

function and with the substitution eq. (2) we �nally ob-

tain a real, rational, SD transfer function H(p1; p2) that ap-

proximates the given speci�cation H0(j!1; j!2) on pi = j!i
(�1 � !i � 1) (i = 1; 2).

The poles of H(p1; p2) must lie in Re pi < 0 (i = 1; 2).

These stability conditions impose constraints on the poles

of h(�1; �2), eq. (8). Regarding the correspondences of the

Darlington transform, given in Table I, we see that the poles

of h(�1; �2) must lie in one of the two domains f�i
��j�ij <

1 and Re �i > 0g or f�i
��j�ij > 1 and Re �i < 0g (i = 1; 2).

To ful�ll these conditions, the poles of �(�1; �2), eq. (7),

must be chosen appropriately. Since the function �(�1; �2)

should have the same region of analyticity (j�1j > 1^ j�2j >

1) as f(�1; �2), eq. (6), its poles must satisfy j�ij < 1 ^

Re�i > 0 (i = 1; 2; : : : ; N1) and j�ij < 1 ^ Re�i > 0 (i =

1; 2; : : : ; N2). That is, f(�1; �2) has to be approximated by

a 2-D SD stable IIR digital �lter transfer function, whose

poles must have positive real part.

Taking a �nite sum of eq. (6) yields

ft(�1; �2) =

L
1X

�=0

L
2X

�=0

~�� �
��
1 �

��
2 ; (10)

which is a 2-D FIR transfer function close to f(�1; �2), pro-

vided L1 and L2 are chosen su�ciently large. We now have

the problem of approximating a 2-D FIR transfer function

by a 2-D SD IIR transfer function. One could try to solve

it e.g. by using the approach given in [3]. But there is no

guarantee that the poles of the function �(�1; �2), eq. (7),

thus obtained, all have positive real parts, as required. To

avoid this di�culty, we solve the problem by a constrained

minimization procedure, as described in section 4. The nec-

essary calculations can be reduced by a considerable amount

with the help of a theorem, presented in the next section.



3. THE THEOREM OF WALSH

For the approximation of 1-D functions, that are analytic in

a certain region, by rational functions in the sense of least

squares, J. L. Walsh has given a theorem [7], that helps to

reduce the number of parameters by imposing constraints

on the numerator coe�cients. The generalization of this

theorem to the 2-D case was made in [8] and is given below.

Theorem 1 Among all possible functions �(�1; �2) of the

form eq. (7), with prescibed poles �i (i = 1; 2; : : : ; N1) and

�j (j = 1; 2; : : : ; N2), that are �xed and located in j�kj < 1

(k = 1; 2), that one is the best approximation in the sense

of least squares to f(�1; �2), analytic in j�1j > 1 ^ j�2j > 1

and continuous in j�1j � 1 ^ j�2j � 1, that interpolates to

f(�1; �2) in all points of the set

S =

�
(�1; �2)

���� �1 2

�
1;

1

��1
; : : : ;

1

��N
1

�
^

�2 2

�
1;

1

��1
; : : : ;

1

��N
2

��
:

These interpolation conditions can be used to formulate

a uniquely solvable set of (N1+1)(N2+1) linear equations

for the (N1+1)(N2+1) numerator coe�cients of �(�1; �2),

as follows:

The interpolation points are denoted as

�10 =1; �1i =
1

��i
(i = 1; 2; : : : ; N1) (11)

and

�20 =1; �2j =
1

��j
(j = 1; 2; : : : ; N2): (12)

We assume, that the number of distinct points in the set �kl
(l = 0; 1; : : : ; Nk) is rk, where 1 � rk � Nk + 1 (k = 1; 2).

Let these distinct points, after a possible renumbering of

the indices, be the points �ki (i = 0; 1; : : : ; rk � 1), which

means, that

�ki 6= �kj (i 6= j; i = 0; 1; : : : ; rk � 1; j = 0; 1; : : : ; rk � 1)

(13)

and

�ki 2 f�k;0; �k;1; : : : ; �k;rk�1g (i = rk; rk+1; : : : ; Nk) (14)

are valid (k = 1; 2). Now, denoting the multiplicity of each

point �ki (i = 0; 1; : : : ; rk � 1) by ski (k = 1; 2), the inter-

polation conditions read

@�

@�
�
1

@�

@��2
�(�1; �2)

�����
�
1
=�

1i
�
2
=�

2j

=
@�

@�
�
1

@�

@��1
f(�1; �2)

�����
�
1
=�

1i
�
2
=�

2j

(� = 0; 1; : : : ; s1i � 1; � = 0; 1; : : : ; s2j � 1)

(i = 0; 1; : : : ; r1 � 1; j = 0; 1; : : : ; r2 � 1): (15)

Eqs. (15) describe a set of (N1+1)(N2+1) linearly inde-

pendent equations, which are linear in the (N1+1)(N2+1)

unknown numerator coe�cients. The solution of this set of

equations is unique. Therefore, the numerator of �(�1; �2)

is uniquely determined by the poles.

A direct application of eqs. (15) is impractical. In the

next section, it is shown, how in our case, where we take

ft(�1; �2), eq. (10), as the function to be approximated, the

numerator coe�cients of �(�1; �2) can be calculated by us-

ing eqs. (15) implicitly.

4. THE FIR APPROXIMATION PROCEDURE

Let the unknown numerator of �(�1; �2), eq. (7), be denoted

by P (�1; �2) and the denominator polynomials by Qk(�k)

and let the Qk(�k) be given as

Qk(�k) =

NkX
�=0

qk� �
��
k (qk0 = 1) (k = 1; 2): (16)

Then the unique numerator polynomial P (�1; �2), that sat-

is�es eqs. (15), can be calculated in two steps:

First we determine a polynomial

C(�1; �2)=

N
1X

i=0

L
2X

j=0

cij �
�i
1 �

�j
2 (17)

such that the rational function

g(�1; �2) :=
C(�1; �2)

Q1(�1)
(18)

interpolates to ft(�1; �2), eq. (10), w.r.t. �1 in the sense

of the theorem. This means, that the di�erence function
~�(�1; �2) := ft(�1; �2) � g(�1; �2) vanishes in the points

�1 = �1i (i = 0; 1; : : : ; N1), eq. (11), for arbitrary �2. As

a consequence C(�1; �2) must satisfy

ft(�1; �2)Q1(�1)� C(�1; �2) = �
�(N

1
+1)

1 Q1(�
�1
1 )R1(�1; �2);

(19)

where

R1(�1; �2) =

L
1
�1X

i=0

L
2X

j=0

r
(1)

ij �
�i
1 �

�j
2 : (20)

After some manipulation of eq. (19), a simple procedure

to calculate R1(�1; �2) and C(�1; �2) can be derived. It re-

quires a digital �lter operation to get R1(�1; �2) and then

C(�1; �2) can be obtained from eq. (19). Details are omitted

for brevity.

In the second step, P (�1; �2) is obtained from C(�1; �2),

eq. (17), as follows. We require, that the rational function

v(�1; �2) :=
P (�1; �2)

Q2(�2)
(21)

interpolates to C(�1; �2), eq. (17), w.r.t. �2 in the sense

of the theorem. This means, that the di�erence function
��(�1; �2) := C(�1; �2) � v(�1; �2) vanishes in the points

�2 = �2j (j = 0; 1; : : : ; N2), eq. (12), for arbitrary �1. As a

consequence P (�1; �2) must satisfy

C(�1; �2)Q2(�2)� P (�1; �2) = �
�(N

2
+1)

2 Q2(�
�1
2 )R2(�1; �2);

(22)

where

R2(�1; �2) =

N
1X

i=0

L
2
�1X

j=0

r
(2)

ij �
�i
1 �

�j
2 : (23)



From eq. (22) R2(�1; �2) and P (�1; �2) can be obtained in

the same way as R1(�1; �2) and C(�1; �2) from eq. (19).

Now consider the di�erence function

�(�1; �2) := ft(�1; �2)� �(�1; �2); (24)

which can be written as

�(�1; �2) = ~�(�1; �2) +
��(�1; �2)

Q1(�1)
: (25)

It vanishes in the interpolation points (�1; �2) 2 S, which

indicates, that P (�1; �2) has been determined such that

�(�1; �2), eq. (7), satis�es the interpolation conditions

eqs. (15).

We now take the coe�cients qk� (� = 1; 2; : : : ; Nk) of the

denominator polynomials Qk(�k) (k = 1; 2), eq. (16), as the

variables of an iterative minimization procedure, where we

try to minimize the l2-norm of �(�1; �2). Using eqs. (19)

and (22), we can show that the square of this l2-norm can

be calculated by

�(�1; �2)2 = R1(�1; �2)
2 +

R2(�1; �2)

Q1(�1)


2

: (26)

In each iteration step, the polynomials C(�1; �2), R1(�1; �2),

R2(�1; �2) and P (�1; �2) are obtained as shown above. Note

that we do not need to know the roots of Qk(�k) (k =

1; 2) explicitly. But it must be ensured, that they lie in

the unit circle and have positive real parts. This can be

achieved by taking the requirements, that the Qk(�k) are

Schur polynomials and that the Qk(��k) simultaneously

are Hurwitz polynomials (k = 1; 2), as constraints.

5. AN EXAMPLE

With the described procedure a SDDF Ĥ(z1; z2) with

N1 = N2 = 15 was designed, whose frequency response ap-

proximates the speci�cation Ĥ0

�
ej
1 ; ej
2

�
= e�(
1
2)

2

+

j
2
1 (sin
2)

3 in the frequency domain (�0:4� � 
1 �

0:4�; �0:7� � 
2 � 0:7�). Fig. 2 shows the real and imag-

inary parts of the speci�cation Ĥ0

�
ej
1 ; ej
2

�
and of the

frequency response of Ĥ(z1; z2). The approximation error

e :=

2
4 1


11
21



11Z

0



21Z

0

���̂ �ej
1 ; ej
2���2 d
2 d
1

3
5
1

2

;

where �̂
�
ej
1 ; ej
2

�
:= Ĥ0

�
ej
1 ; ej
2

�
� Ĥ

�
ej
1 ; ej
2

�
,


11 = 0:4� and 
21 = 0:7�, was e = 0:0465.

6. CONCLUSION

A procedure for the design of SDDFs was described. The

approximation of a given complex-valued frequency re-

sponse speci�cation was achieved with the help of the bilin-

ear transform, the Darlington transform and a constrained

minimization procedure. The problem was reformulated as

an FIR-to-IIR approximation problem, whose solution was

considerably simpli�ed by a theorem of Walsh. An example

was presented to show the applicability of our approach.
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Figure 2. Real- and imaginary parts of the given

speci�cation and of the frequency response of the

designed SDDF.
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