
PROPERTIES OF APPROXIMATE PARKS-McCLELLAN FILTERS

Li Lee and Alan V. Oppenheim

Research Laboratory of Electronics
MIT, Cambridge, MA 02139

ABSTRACT

It has been observed empirically that each coe�cient in a
Parks-McClellan �lter converges to a steady state value as
the �lter length increases. This suggests the possibility of
obtaining �lters that are near optimal while "re-using" �l-
ter coe�cients from shorter �lters in the design of longer
�lters. In the context of approximate processing this then
allows a �ltering operation to be done in stages. This pa-
per demonstrates this observation and examines some of its
implications.

1. INTRODUCTION

For digital signal processing applications with real-time or
low-power constraints, it is often desirable to use algorithms
whose output quality can be adjusted depending on the
availability of resources such as time or power. For this
reason, recently there has been increased interest in ap-
proximate signal processing algorithms whose intermediate
results represent successively better approximations to the
desired solution [1] [2] [3] [4].

When designing FIR �lters, successively better solu-
tions become possible as the �lter length is allowed to in-
crease. For example, if windowing is used to design a low-
pass �lter, greater stopband attenuation and sharper tran-
sition bands would result from longer windows. However,
to design the �lter with the optimal stopband attenuation
for a given length and transition band, the Parks-McClellan
algorithm is used.

In this paper, we explore the possibility of designing
FIR �lters for approximate signal processing under the min-
imax criterion used in Parks-McClellan (hereafter written
as P-M) �lters. The study has been motivated by the ob-
servation that for P-M �lters designed under �xed transi-
tion band constraints, the value of a given coe�cient as
a function of the �lter length N converges as N becomes
large. This \settling" behavior suggests the possibility of
\reusing" �lter coe�cients (i.e., those which had already
converged to within a given level of error) from shorter �l-
ters in the design of longer �lters, and vice versa. In the
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context of approximate signal processing, this would allow
a �ltering operation to be done in stages, each extending
the previous by adding on the results of �ltering using only
those �lter taps which changed or became non-zero. Al-
ternately, it would allow the �lter length to be adjusted to
adapt to changing resources.

The purpose of this paper is to examine some of the im-
plications of this observation. After describing the notation
and assumptions we make in the paper, we demonstrate em-
pirically and mathematically that P-M �lter coe�cients in-
deed converge as functions of �lter length. Additionally, we
use linear programming to explore and evaluate two possi-
ble strategies to \reuse" �lter coe�cients from other �lters.
We �nd that one of these approximate FIR �ltering schemes
appears to o�er performance competitive with P-M �lters
at each stage of computation.

2. NOTATION

This study is limited to type I linear phase low-pass �lters,
which are symmetric with an odd number of taps. The
impulse response of a causal �lter with 2N + 1 taps is de-
noted by h[n] = hN [n � N ]. For convenience in notation
we refer to hN [n] as the impulse response, recognizing that
the corresponding causal impulse response is easily obtained
through a simple time shift. The corresponding frequency
response is then the Fourier transform of hN [n], i.e.,

HN(e
j!) = hN [0] + 2

NX
n=1

hN [n] cos(n!) (1)

Additionally, Hd(e
j!) denotes the desired frequency re-

sponse,

Hd(e
j!) =

�
1; 0 � ! � !p;

0; !s � ! � �
(2)

where !p is the passband edge frequency and !s is the stop-
band edge frequency. In the empirical studies described in
this paper, the error tolerance was chosen to be the same for
both the passband and the stopband. The error measure,
which is the maximum error over the pass- and stopbands,
is denoted by EN :

EN = max(jHd(e
j!) �HN (e

j!) j): (3)

A P-M �lter of length 2N + 1 achieves the minimal EN
possible. In this paper, hN [n] always denotes a P-M �lter,
whereas gN [n] denotes an approximate �lter.
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Figure 1: Four coe�cients of P-M �lters are tracked as the
lengths of the �lters increase. The �lter design parameters
are !p = 0:39� and !s = 0:41�.

3. CONVERGENCE OF FILTER

COEFFICIENTS

In this section, we discuss the behavior of P-M �lter coef-
�cients as the �lter length increases. We note in particular
that the coe�cients appear to converge, and we present a
mathematical justi�cation for this convergence behavior.

In Figure 1, the behavior of the values of four P-M �lter
coe�cients is shown as �lter length increases. We note that
initially there is considerable variation in the value of the
coe�cients. But as the length increases, the variations de-
crease and each coe�cient appears to settle to a relatively
constant value. This behavior has been observed consis-
tently in our empirical studies.

Mathematically, the convergence behavior of the indi-
vidual coe�cients can be explained by the behavior of the
functions HN(e

j!) as N increases. Because the set of all
possible �lters hN [n] is a subset of the �lters hN+1[n], the
maximum error in the pass- and stopbands can only de-
crease as the �lter length increases. Therefore,

lim
N!1

EN = 0: (4)

Further, since Eqn. (3) represents a distance measure be-
tween Hd and HN in the space of functions over X =
[0; !p] [ [!s; �], Eqn. (4) shows that HN converges uni-
formly to Hd everywhere except for the transition region.

While the behavior of the functions within the transi-
tion region [!s; !p] is not as easily characterized, empirical
observations suggest that either the sequence HN (e

j!) con-
verges uniformly to some continuous function H(ej!) or it
converges uniformly everywhere except at the middle of the
transition region.

In the case that HN (e
j!) does converge uniformly to

some function H(ej!) over [0; �], then the convergence of
hN [n0] in the time domain results from the following:

lim
N!1

jhN [n0]� h[n0]j

= lim
N!1

j
1

2�

Z �

��

(HN (e
j!)�H(ej!) ) cos(n0!)d!j

� lim
N!1

1

�

Z
�

0

jHN(e
j!
)�H(e

j!
)jd!

�
1

�

Z �

0

lim
N!1

ENd!

= 0 (5)

Further, because an integral is used, the above equations
hold even if isolated points of HN (e

j!) do not converge uni-
formly to H(ej!) on the transition region. Therefore, the
coe�cients individually converge whether or not uniform
convergence takes place over the entire frequency axis.

4. APPROXIMATE FILTERS

One consequence of the convergence behavior of the coe�-
cients is that in general, hN [n]� hN+M [n] is small for the
center coe�cients jnj � N0, which have su�ciently \set-
tled". This suggests the possibility of using the same coef-
�cients for both hN [n] and hN+M [n] for jnj � N0. A �lter
of length 2N + 1 which constrained a subsets of its coef-
�cients to be identical to those coe�cients from hN+M [n]
would obviously be only an approximation to the optimal
�lter hN [n]. However, if the assumed coe�cients are close
to those of the actual optimal �lter, the approximation may
result in only a slight degradation in performance.

Approximate signal processing algorithms are typically
structured such that successively re�ned answers are yielded
at intermediate points of computation. In the case of FIR
�ltering, approximate P-M �lters can be incorporated into
an overall �ltering algorithm under two possible strategies.
Both of them progressively improve the �lter output quality
at each re�nement stage by augmenting the �lter. Specif-
ically, at each stage of re�nement a portion of the �lter
coe�cients are retained from the previous stage and the
remaining coe�cients are updated. The input is processed
through only those �lter taps which changed, and the result
is added to the output of the previous �ltering stage.

The di�erence between the two methods is that while
one method (which we refer to as Method I) ends with an
optimal longest �lter at the last �ltering stage, the other
(Method II) starts with an optimal shortest �lter at the
�rst step. More speci�cally, Method I starts by designing
a P-M �lter to be used at the last �lter stage. The shorter
�lters used in the intermediate stages of the algorithm then
constrain their center �lter coe�cients (jnj � N0) to the
values of this �nal �lter. In contrast, Method II starts with
the design of a P-M �lter for the �rst �lter stage. Then
at each stage, the center taps (jnj � N0) of the existing
�lter are kept �xed, the rest are modi�ed, and new taps are
added.

In both methods, the �lters used in the intermediate
stages are suboptimal, and the remainder of the paper at-
tempts to characterize the cost of the approximations by
comparing the stopband attenuation of the approximate �l-
ters to those of P-M �lters. To investigate the performance
of the approximate �lters, an interior-point method for lin-
ear programming was used to solve the following problem:

Design an FIR �lter gL[n] of 2L + 1 taps
such that gL[n] = hM [n] for jnj � N0, and
max jG(ej!) � Hd(e

j!)j is minimized over
the pass- and stop-bands.



Letting

A(e
j!
) = hM [0] + 2

N0X
n=1

hM [n] cos(n!); (6)

the algorithm solves the linear programming problem which
minimizes the maximum error �, under the constraints

j2

LX
N0+1

gL[n] cos(n!) + A(ej!)�Hd(e
j!)j � �; (7)

for 0 � ! � !p and !s � ! � �. While the e�ciency
of the algorithm is comparable to that of other linear pro-
gramming algorithms, it is more computationally intensive
than the Remez algorithm. Therefore, it is not the intent of
this paper to propose this speci�c algorithm as an e�cient
method for obtaining the �lter coe�cients in the incremen-
tal re�nement procedure. Rather, we hope to use its results
to compare the error of the �lter gL[n] with that achieved
by the P-M �lter hL[n] under di�erent ways of choosing N0.
The results would give a good indication the feasibility of
using Method I or II to reuse �lter coe�cients in the pro-
cess of lengthening the FIR �lter. It then remains to �nd
a suitably e�cient algorithm for obtaining the remaining
coe�cients.

5. EXPERIMENTAL RESULTS

5.1. Method I

In this section, we present by example some observations
related to the approximate �lters which would be used in
Method I. Based on these observations, we discuss the fea-
sibility of performing approximate FIR �ltering using this
strategy and comment on the e�ect of the choice of param-
eters such as N0 on the performance of the approximations.

In Method I, the same �lter hM [n] is used to constrain
the taps of the approximate �lters gL[n], where L < M .
One design issue deals with the choice of N0 for each pos-
sible value of L. If N0 is small, the approximation gL[n]
will be closer to the optimal P-M �lter. However, a large
N0 makes the approximate �ltering scheme more e�cient,
since only a few �lter coe�cients would have to be updated
for the next computational stage. Along with this design
tradeo� is a further question of how to choose N0 as a func-
tion of L.

Figures 2 and 3 show the results of two possible ap-
proaches to choosing N0 as a function of L. In Figure 2,
we choose N0 = L � c, for c = 10; 20; 30. In Figure 3,
we choose N0 = �L, for � = 0:1; 0:3; 0:5; 0:7. Both �gures
show the stopband attenuations achieved by approximate
P-M �lters GL(e

j!) for each of those settings, as well as
the lower bounds set by the attenuation of the P-M �l-
ters. The optimal �lter h75[n] used to constrain the taps of
GL(e

j!) is a P-M �lter of 151 taps. Additionally, the design
parameters were !p = 0:38� and !s = 0:42� for all of the �l-
ters. For example, in Figure 2, the �lter g50[n], represented
by the circle(`o') for L = 50, was generated using linear
programming under the constraint that g50[n] = h75[n] for
jnj < L � 10 = 40. Similarly, in Figure 3, the �lter g60[n],
represented by the `+' for L = 60, was generated using lin-
ear programming under the constraint that g60[n] = h75[n]
for jnj < 0:3L = 18.
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Figure 2: Stopband attenuation of approximate �lters gL[n]
as compared with the corresponding P-M �lters hL[n].
gL[n] is a length 2L + 1 FIR �lter which achieves the
greatest stopband attenuation under the constraint that
gL[n] = h75[n] for jnj � N0, and N0 = L� c, as labelled.
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Figure 3: Stopband attenuation of approximate �lters gL[n]
as compared with the corresponding P-M �lters hL[n].
gL[n] is a length 2L + 1 FIR �lter which achieves the
greatest stopband attenuation under the constraint that
gL[n] = h75[n] for jnj � N0, and N0 = �L, as labelled.

It is clear from the �gures that the performance of
the approximate �lters improves with decreased N0, as ex-
pected. In Figure 2, where N0 = L� c, the constant c sig-
ni�cantly varies the stopband attenuation achieved by the
approximation GL(e

j!) for small L, but its e�ect decreases
as L increases. In contrast, in Figure 3, where N0 = �L,
the deviation between the performance of the approxima-
tions GL(e

j!) and that of the P-M �lters HL(e
j!) appears

to be sensitive to the value of � for every value of L except
L = 75, where gL[n] is �xed to be the optimal P-M �lter.
This comparison suggests that choosing N0 as a fraction of
L is a better choice. These plots also suggest that Method I
is feasible way to structure approximate FIR �ltering. For
� = 0:5, in the worst case (L = 55), the stopband attenua-



tion for GL(e
j!) was only 4 dBs higher than that achieved

by the P-M �lter.

5.2. Method II

In this section, we examine the performance of approximate
�lters which would be used in Method II. Under Method II,
one starts the approximate processing with an optimal P-M
�lter. At the end of each processing stage, the taps of the
current �lter form the constraints for the design of the ap-
proximate �lter for the next stage. The plots in this section
will indicate the limitations of structuring approximate FIR
�ltering this way. As in the last section, we also comment
on the e�ect of the choice of N0 on the performance of the
approximate �lters.

Figures 4 and 5 show the stopband attenuation
achieved by each stage of the approximate �ltering when we
structure FIR �ltering using Method II under two schemes
of choosing N0. In Figure 4 we choose N0 = L � c, for
c = 10; 20; 30; 40, and in Figure 5, we choose N0 = �L,
for � = 0:1; 0:2; 0:3; 0:5. For example, in Figure 4, the
curve connecting the asterisks (`*') shows the stopband at-
tenuation achieved when each gL[n] is generated under the
constraint gL[n] = gL�5[n] for jnj < L � 40. Similarly in
Figure 5, the curve connecting the asterisks (`*') shows the
stopband attenuation achieved when each gL[n] is gener-
ated under the constraint gL[n] = gL�5[n] for jnj < 0:1L.
In both plots, g45[n] is set to be the P-M �lter of length 91,
and the design parameters are !p = :38� and !s = 0:42�.

The curves show that with Method II, the stopband
attenuations achieved by the approximate �lters reach a
breakpoint in L. After that point, increasing L no longer
improves the performance of the �lter, and the performance
di�erence between the approximate �lters and the P-M �l-
ters increases rapidly. The parameters c in Figure 4 and �
in Figure 5 in
uence the position of the breakpoint, but not
the behavior of the approximate �lters after it. Addition-
ally, the �gures show that N0 has to be chosen to be quite
small (large c or small �) for the breakpoint to take place
for a large value of L. A comparison of these �gures with
Figures 2 and 3 clearly indicates that Method I o�ers much
better performance over a wider range of L than Method
II.

6. SUMMARY

This paper presented an empirical study which showed the
feasibility of using approximate P-M �lters for approximate
signal processing. By exploiting the observation that �lter
coe�cients of P-M �lters converge, we found that placing
appropriate constraints on the center coe�cients of the ap-
proximate �lters only slightly degraded their performance.
Future research directions include developing a �rm the-
oretical understanding of our observations and �nding an
e�cient algorithm for designing the approximate �lters.
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