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ABSTRACT

This paper presents two methods for the design of FIR �l-
ters with arbitrary magnitude and phase responses accord-
ing to a weighted mean squared error criterion with con-
straints on the resulting magnitude and phase errors. This
constrained least square criterion allows for an arbitrary
trade-o� between pure L2 �lters and Chebyshev �lters. The
resulting nonlinear optimization problem is either converted
into a standard quadratic programming problem (method
1) or exactly solved by a sequence of quadratic programs
(method 2). The quadratic programming problems can be
solved e�ciently using standard software.

1. INTRODUCTION

The least squares optimality criterion for the design of dig-
ital �lters is a reasonable choice for many practical appli-
cations. Especially in the stopbands of frequency selective
�lters it may be desirable to minimize the energy of the
error. However, the maximum error can not be controlled.
Especially at the bandedges large errors occur due to Gibbs'
phenomenon. This problem can be overcome by imposing
constraints on the resulting error. This constrained least
square (CLS) criterion has �rst been proposed by Adams
[1] for the design of linear phase FIR �lters. An extension
to the nonlinear phase case was given in [2], where the L2

design with constraints on the complex error is considered.
The limitation of this approach is that magnitude and phase
of the frequency response cannot be constrained separately.
In [3] a CLS design with constraints on the magnitude and
group delay is proposed.

In this paper we propose the minimization of the weighted
L2 norm of the complex error function subject to constraints
on the magnitude and phase of the frequency response. The
magnitude and phase errors of the frequency response di-
rectly contribute to the linear signal distortions and hence
it seems reasonable to impose constraints on these quanti-
ties. According to the author's knowledge the solution to
this problem has not been considered so far.

This work has been supported by FWF grant P11133-ÖMA.

2. PROBLEM FORMULATION

The frequency response of an FIR �lter with impulse re-
sponse h(n) of length N is given by1

H(ej�) =

N�1X
n=0

h(n)e�jn� = h
T
e(�); (1)

with h = [h(0); h(1); : : : ; h(N � 1)]T and e(�) = [1; e�j�;

e�j2�; : : : ; e�j(N�1)�]T . The weighted L2 norm of the com-
plex frequency domain error function is given by

E =

s
1

�

Z �

0

W (�)jH(ej�)�D(ej�)j2d�; (2)

where W (�) is a real non-negative weighting function and
D(ej�) is the desired complex frequency response. Squaring
(2) and ignoring terms which are independent of the �lter
coe�cients gives the following strictly convex quadratic ob-
jective function to be minimized:

F (h) = h
T
Qh� 2hTq: (3)

The N � N matrix Q and the length N column vector q
are de�ned as follows:

Q =
1

�

Z �

0

W (�)e(�)eH(�)d�

q =
1

�

Z �

0

W (�)RefD�(ej�)e(�)gd�: (4)

These integrals can be calculated analytically for many prac-
tical �lter design speci�cations. The unconstrained mini-
mization of (3) gives the coe�cients

h = Q
�1
q: (5)

This is the solution of the complex approximation prob-
lem according to the weighted L2 norm. In order to bound
the maximum value of the resulting errors, additional con-
straints will be considered. The quantities to be constrained

1The superscripts *, T and H represent conjugate, transpose,
and conjugate-transpose operations, respectively.
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Figure 1: Constraints on magnitude and phase of the fre-
quency response in the complex plane. (a) passbands. (b)
stopbands.

are the magnitude error Em(�) = jH(ej�)j � jD(ej�)j and
the phase error E�(�) = argfH(ej�)g � argfD(ej�)g. The
constraints are formulated as

jEm(�)j � �(�) and jE�(�)j � �(�); (6)

where �(�) and �(�) are real, strictly positive functions spec-
i�ed by the �lter designer. A graphical explanation of the
constraints (6) in the complex plane is shown in �g. 1. For
every frequency point in the passbands and in the stop-
bands the frequency response H(ej�) is con�ned to the
shaded regions in �g. 1 (a) and (b). The resulting optimiza-
tion problem with the objective function (3) and the con-
straints (6) is a nonlinearly constrained non-convex prob-
lem. This is due to the fact that the inequalities in (6)
de�ne a non-convex region in the N -dimensional �lter co-
e�cient vector space. A direct solution of this problem is
di�cult and standard optimization methods are slow and
only yield local solutions. Hence, in this paper two alter-
natives are proposed to overcome these problems. In the
�rst method the constraints (6) are linearized and the re-
sulting convex quadratic programming problem is solved by
an e�cient standard method. The errors introduced by the
linearization of the constraints are of second order in the
small quantities �(�) and �(�) in the passbands, and can be
made arbitrarily small in the stopbands by increasing the
size of the problem. The second method, however, gives
an exact solution of the problem by solving a sequence of
quadratic programs. The linearizations used in this method
are di�erent from the ones used in method 1.

3. DESIGN METHODS

3.1. Method 1

Here, the original problem is slightly altered by linearizing
the constraints (6). This yields a linearly constrained con-
vex quadratic minimization problem, which can be solved
e�ciently using robust standard algorithms. The lineariza-
tion of the constraints only a�ects the magnitude constraints.
Let Bp and Bs denote the set of passbands (jD(ej�)j > 0)
and the set of stopbands (jD(ej�)j = 0), respectively. The
original constraints ��(�) � Em(�) � �(�) are replaced by
the linear constraints

��l(�) � RefH(e
j�
)e
�j�D(�)

g � jD(e
j�
)j � �u(�) (7)
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Figure 2: Linear magnitude constraints with (2) and with-
out (1) reduction of the original feasible region. (a) pass-
bands. (b) stopbands (with p = 4).

for � 2 Bp with �D(�) = argfD(ej�)g, and

RefH(ej�)ej�ig � �s(�); i = 0(1)2p� 1 (8)

for � 2 Bs with �i = i�=p and any integer p � 2. The
constraints (7) were �rst used in [4] for the design of FIR
allpass �lters, and the linearization used in (8) was proposed
in the context of FIR �lter design according to the complex
Chebyshev criterion in [5]. Fig. 2 shows the linearization of
the magnitude constraints according to (7) and (8) in the
complex plane. The alternatives 1 and 2 in �g. 2 correspond
to the following choices of the functions �l(�), �u(�) and
�s(�) in (7) and (8):

Alternative 1: (9)

�l(�) = �(�) cos �(�) + jD(ej�)j(1� cos �(�)); � 2 Bp;

�u(�) = �(�); � 2 Bp; �s(�) = �(�); � 2 Bs:

Alternative 2: (10)

�u(�) = �(�) cos �(�)� jD(ej�)j(1� cos �(�)); � 2 Bp;

�l(�) = �(�); � 2 Bp; �s(�) = �(�) cos( �
2p
); � 2 Bs:

Choosing alternative 1 will give a solution with an opti-
mal value of the objective function that is guaranteed to
be less or equal to the optimal value of the original prob-
lem. However, the original constraints might be violated.
The maximum violation �p(�) of the original magnitude
constraints in the passbands is given by

�p(�) =
�
jD(ej�)j+ �(�)

�
(sec �(�)� 1) (11)

=
�
jD(ej�)j+ �(�)

� �
1
2
�2(�) + 5

24
�4(�) + : : :

�
;

which consists only of terms of second and higher order
of the speci�ed functions �(�) and �(�). The maximum
violation �s(�) of the original magnitude constraints in the
stopbands is

�s(�) = �(�)(sec(�=2p)� 1); (12)

which approaches zero quadratically with increasing p. The
original constraints are guaranteed to be satis�ed if the lin-
earized magnitude constraints are chosen according to al-
ternative 2. However, the value of the objective function
might be larger than its value at the optimal solution of the
original problem.



Fig. 1 shows that the constraints on the phase error
are linear functions in RefH(ej�)g and ImfH(ej�)g. Since
these functions are linear functions of the �lter coe�cients
h, it is obvious that constraints on the phase error function
E�(�) can exactly be imposed using linear constraint func-
tions. The constraints E�(�) � �(�) (E�(�) � ��(�)) can
be formulated as

ImfH(ej�)g � (�) tan[�D(�) + (�)�(�)]RefH(ej�)g

for j�D(�) + (�)�(�)j< �=2;

ImfH(ej�)g � (�) tan[�D(�) + (�)�(�)]RefH(ej�)g

for j�D(�) + (�)�(�)j> �=2;

sign[�D(�) + (�)�(�)]RefH(ej�)g � (�)0

for j�D(�) + (�)�(�)j= �=2;

� 2 Bp: (13)

These constraints are linear in the unknown �lter coe�-
cients h. The optimal �lter coe�cients can be computed
by solving the standard quadratic programming problem
with the objective function (3) and the constraints (7), (8),
and (13) evaluated on a dense frequency grid. Ifmp and ms

denote the number of frequency points in the passbands and
stopbands, respectively, then the number of constraints is
2(2mp + pms). The larger the integer p is chosen the more
constraints have to be considered, but the smaller is the
di�erence to the original constraints in the stopbands.

3.2. Method 2

With this method the solution of the original problem is
computed by solving a sequence of quadratic programming
problems. The nonlinear magnitude constraints jEm(�)j �
�(�) can be written as

jH(ej�)j2 �
�
jD(ej�)j � �(�)

�2
; � 2 Bp;

jH(ej�)j2 �
�
jD(ej�)j+ �(�)

�2
; � 2 Bp;

jH(ej�)j2 � �
2(�); � 2 Bs: (14)

The squared magnitude of the frequency response is given
by

jH(ej�)j2 = h
T
e(�)eH (�)h: (15)

In iteration k we use the linearization

jH(e
j�
)j
2
� h

T
k�1e(�)e

H
(�)h (16)

with �xed hk�1 from the previous iteration. In the �rst it-
eration (k = 1) h0 is chosen according to (5) as the solution
of the unconstrained problem. In all further iterations

hk = �h
opt

k + (1� �)hk�1; (17)

where hoptk is the optimal solution of the k-th subproblem
and � 2 (0; 1) is an update factor. The choice � = 0:2::0:5
usually results in good convergence. This simple trick for re-
ducing the order of a nonlinear function was �rst proposed
in [6] for the design of QMF banks using unconstrained

optimization. In each iteration we solve the quadratic pro-
gramming problem with the objective function (3), the lin-
ear constraints (13), and the linearized constraints

h
T
k�1e(�)e

H
(�)h �

�
jD(e

j�
)j � �(�)

�2
; � 2 Bp;

h
T
k�1e(�)e

H
(�)h �

�
jD(e

j�
)j+ �(�)

�2
; � 2 Bp;

h
T
k�1e(�)e

H
(�)h � �

2
(�); � 2 Bs: (18)

with hk�1 computed in the previous iteration. This itera-
tive algorithm stops if the violation of the original magni-
tude constraints (14) is smaller than some prescribed toler-
ance or, equivalently, if khopt

k
�h

opt

k�1k is smaller than a pre-
scribed bound. The constraints (13) and (18) are evaluated
on a dense frequency grid. The total number of constraints
per iteration is 4mp +ms. In practice, the number of con-
straints can be reduced considerably after a few iterations
because the set of active constraints remains essentially un-
changed. As an alternative to (16) we could use a Taylor
series for jH(ej�)j about hk�1 as in [3]. However, exper-
iments showed that using the linearization (16) results in
better convergence. It should be noted that convergence
of this method cannot be guaranteed. However, many �l-
ter designs using this method assured us that it does in fact
converge fast for most practical speci�cations. Convergence
problems may arise if the constraints in the stopbands are
very restrictive. In this case the optimal solution exhibits
an equiripple stopband behavior. However, for all exam-
ples we tried it was always possible to ensure convergence
by decreasing the update factor � in (17), albeit at a slower
rate.

The advantage of method 1 is that convergence can not
become a problem. Only one quadratic programming prob-
lem has to be solved and there exist reliable algorithms with
guaranteed convergence to the optimal solution. However,
linearization of the magnitude constraints is necessary, and
hence only an approximate solution of the original prob-
lem can be computed. Method 2 directly solves the original
problem. Optimality of the solution is guaranteed because
the original non-convex problem is iteratively approximated
by convex problems with unique optimal solutions. In the
case of convergence, the original problem is, up to a spec-
i�ed tolerance, exactly represented by the convex problem
of the �nal iteration. The number of constraints of each
quadratic programming problem is smaller than in method
1. However, a sequence of these problems has to be solved
and convergence can not be guaranteed in general. The
disadvantages of both methods are not severe. For prac-
tical speci�cations the linearization errors of method 1 are
negligible, and convergence of the algorithm in method 2 is
usually fast.

4. DESIGN EXAMPLE

A length 51 low-delay bandpass �lter with a constant de-
sired passband magnitude response of 1 was designed us-
ing the proposed methods. The phase response was re-
quired to be approximately linear in the passband, but the
desired delay was chosen to be 15 samples instead of 25
samples as in the exact linear phase case. The stopband
edges are fs1 = 0:1, fs2 = 0:35, and the passband edges are



fp1 = 0:15, fp2 = 0:3 (f = �=2�). The weighting function
W (�) in (2) was chosen to be 103 in the �rst stopband, 1
in the passband, 104 in the second stopband, and 0 in the
transition bands. The maximum passband errors were spec-
i�ed to be 0.04 for the magnitude error and 0.03 radians for
the phase error. The minimum stopband attenuation was
chosen to be 50 dB in the �rst stopband and 60 dB in
the second stopband. Two solutions were computed using
method 1. The �rst with linearized magnitude constraints
according to (9) (alternative 1) and the second according
to (10) (alternative 2). A third solution was computed us-
ing method 2. For the designs with method 1 p = 4 was
chosen. The number of equidistant frequency points was
mp = 107 and ms = 178 (71 points in stopband 1 and
107 points in stopband 2) for all 3 designs. Fig. 3 shows
the magnitudes of the frequency responses of the designed
�lters. The �lters are almost identical. However, method
1/alternative 1 (dotted curve) gives a result which slightly
violates the original magnitude constraints. The maximum
violation of the magnitude constraints in the passband is
2:94 � 10�4 which is smaller than the bound (11). The max-
imum stopband violation is 0.69 dB which equals the bound
(12). This maximum violation in the stopbands occurs only
once in each stopband at the �rst relative maximum next
to the bandedges. The stopband violations can be made
arbitrarily small by increasing p. The passband and stop-
band details are shown in �g. 4. It took 8 iterations for
the algorithm of method 2 to converge to a solution with
a maximum constraint violation of 7:5 � 10�7 with an up-
date factor � = 0:5. The smallest value of the objective
function is achieved by the solution computed with method
1/alternative 1. This is due to the fact that this prob-
lem formulation has the least restrictive constraints. The
most restrictive constraints occur for method 1/alternative
2 which yields the largest value of the objective function.
The di�erent decays of the stopband magnitude in �g. 4 (c)
and (d) show this fact.

5. CONCLUSION

Two di�erent methods for the design of nonlinear phase
FIR �lters with arbitrary magnitude and phase responses
have been proposed. The solutions are computed according
to a least squares criterion with additional constraints on
the resulting magnitude and phase responses. In method 1
only one quadratic programming problem has to be solved
and the solutions are close to the optimum. Method 2 re-
quires the solution of a sequence of quadratic programming
problems. The solutions computed with method 2 are opti-
mal, but convergence cannot be guaranteed. However, the
method converged for all practical design examples. Cur-
rent work concentrates on the development of an e�cient
multiple exchange algorithm to avoid frequency discretiza-
tion. First results are encouraging.
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