DESIGN OF POLAR-SEPARABLE FIR FILTERS BY RADIAL SLICE
APPROXIMATIONS

Richard Rau and James H. McClellan

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

ABSTRACT

We introduce the design of polar-separable 2-D FIR filters
by radial slice approximations (RSA). It is a two step pro-
cedure. First, 1-D filters for the radial and the angular
components are designed. Then the desired filter response
is approximated on many radial slices in a weighted mean
square sense. In the case of circular filters, RSA outper-
forms other design procedures in terms of ripple size and
circularity of the passband. Examples of filters with non-
constant angular functions prove the flexibility of the new
method.

1. INTRODUCTION

The design of 2-D FIR filters for signal and image pro-
cessing is an important and difficult problem. Several im-
age processing techniques [1, 2] require FIR filters that are
polar-separable in the ideal case. We present here a gen-
eral two step procedure called Radial Slice Approximations
(RSA) to design FIR filters with arbitrary angular and ra-
dial specifications in the frequency domain. First 1-D filters
for the radial and angular components are designed. Then
the impulse response is obtained by approximating the ra-
dial filters weighted by the angular components along radial
slices. The resulting filter design equations have the form of
an unconstrained deconvolution problem and can be solved
efficiently.

2. POLAR-SEPARABLE FILTERS

A continuous 2-D function D(z,y) is polar-separable, if it
can be written as a product of a purely angular and a purely
radial component in polar coordinates. Since the frequency
response of 2-D discrete filters is 27-periodic in each direc-
tion, polar-separable discrete filters in the strict sense do
not exist. Instead, we consider here filters of the ideal form
(see Fig. 1):

[ R@A($) ifw<n
D{wi,ws) = { 0 in rest of freq. cell (1)

with w = \/w? + w3, w € [0,7] and ¢ = arg(w1,w2), ¢ €
[0,27). To avoid ambiguities special care has to be taken
for w = 0. Two cases are possible:
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1. R(0) # 0 requires that A(¢) = const.V¢ € [0, 27).
2. R(0) = 0 permits A(¢) to be arbitrary.

Thus, lowpass filters can only be circular symmetric. We
restrict ourselves to real coefficient filters. In this case R(w)
can be chosen real without loss of generality and the angular
component becomes A(¢) = Ac(¢) + jA(p) with Ac(¢)
being real and even-harmonic and A,(¢) being real and
odd-harmonic.

The proposed filter design technique exploits the fact
that radial slices of D(w1,w2) on the m-disk, as shown in
Fig. 1, can be viewed as the frequency responses of 1-D
filters.

If we extend R(w) into an even function

Re(w) = R(w)X[0,x)(w) + R(=w)X[~r,0)(w) (2)
and an odd function

Ro(w) = R(w)x[0,x(w) — R(—w)X[-x,0)(w) 3)
with the indicator function X[, defined on the interval

[a, b], a radial slice S5 (w) = D(w cos B, wsin 3), w € [-m, 7]
for any 8 € [0, 27) can be written as

S5 (W) = Re(w)Ac(B) + jRo(w) Ao (B) (4)
The inverse DTFT of (4) with respect to w is
55 (n) = re(n)Ac(B) + ro(n) Ao (B) (5)

where r.(n) and ro,(n) are even and odd real valued se-
quences, respectively.

3. APPROXIMATION OF RADIAL SLICES

Filters of the form (1) are IIR and are, therefore, not practi-
cal in most cases. Instead, we present a procedure to design
2-D FIR filters which approximate the ideal filters closely.
Let f(ni,n2) denote the 2-D impulse response of the
FIR filter to be designed with a region of support (ROS) of
size N x N. In the design, the ROS of f(ni,n2) needs to
be centered at the origin of the coordinate system. Hence,
if N is even, we work on the grid of mid-integer points
(Z+ 1) x(Z+1).
There is a linear 3-dependent operator which maps f(n1,n2)
into its radial slice sj (n) defined on the 7-disk:

sh(n) =Y f(k1)Sls(n, k,1) (6)
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Figure 1: General specifications of polar-separable FIR fil-
ters.

with the kernel
Slg(n, k,1) = sinc(m(n — k cos B — Isin 3)) (7

and with n,k,l € Zor (Z + ), respectively. Although
f(n1,n2) has finite support, sf;(n) can have infinite sup-
port. Equation (6) can be viewed as a discrete, bandlimited
version of the Projection-Slice Theorem.

The filter F/(w1,w2) approximates D(wi,w2) on the 7-
disk well, if s5(n) & s§(n), V8. This criterion is used to
design F(w1,w») by approximating sg (n) for several 3 si-
multaneously. We minimize for each slice the mean squared
error || s5(n) — s5 (n) ||3. The resulting normal equations
for the approximation of one slice are:

> Kslk—pl—a)f(p,q) =Y _ s5(n)Sls(n, k,1) (8)

»,g€ROS n

with k,1 € ROS. The kernel

(oo}

Ks(k—p,l—q)= Y Sls(m,k,DSls(m,p,q)  (9)

m=-—00

can be evaluated in closed form by rewriting the sum as a
convolution of ideal brickwall lowpass filters with fractional
delays. It is

Kg(k,1) = sinc(mw(k cos 8 + Isin 3)) (10)

The left side of (8) is a 2-D convolution. Approximating
many slices simultaneously leads to a multi-objective opti-
mization problem of the form

min max | 53, (n) = 55, () |} (11)

which is difficult to solve. Instead we use a weighted least
squares approach. In this paper our results were obtained
with a uniform weight distribution. A recursive weighted
least squares method to solve (11) approximately is cur-
rently under investigation.

Since the approximation of radial slices specifies the fre-
quency response only inside the m-disk, we need additional
constraints to force the gray and black areas of Fig. 1 to
zero. The minimization of the signal energy in those fre-
quency regions in the mean square sense can easily be in-
corporated into our framework. The corresponding nor-
mal equations are homogeneous and contain a kernel of the

form:

_N(mVIE+ k) (12)

2V + k2

where Ji(-) is the Bessel function of the first kind of or-
der 1. If the frequency responses of re(n) and of r,(n) are
not zero at w = , this additional error constraint does not
suppress the signal energy in the black areas of Fig. 1 suf-
ficiently, which can lead to high ripples. Several additional
constraints are possible. The most effective solution was
found to be minimizing the energy along the edges of the
frequency cell. The error kernel is:

Eq(k,1) = 6(1)3(k)

Ex(k,1) = (=1)*0(1) + (—1)"d(k) (13)

The set of filter design equations is a linear combination
of the normal equations for several slices and for the two
energy constraints:

(wEl Eitwg,E2+ Z wgy, Kﬁk)**f = Z wg,, (S[?k ) Slﬁk)”
BrEB BrEB
(14)
where #x denotes 2-D convolution and (:,-), the summa-
tion with respect to n. B denotes the set of slice angles.
The relative importance of the different error terms can be
adjusted with the weights w, .

4. DESIGNING THE RADIAL AND ANGULAR
COMPONENTS

Mean square error filters can locally deviate significantly
from the desired frequency response. Therefore, other error
criteria like Chebyshev approximation are often employed.
However, they lead to computationally very expensive al-
gorithms, especially in the 2-D case.

Since RSA is based on minimizing a mean square error
criterion, it is subject to the same kind of local deviations.
In order to reduce them while keeping the simple set of de-
sign equations (14), we suggest a two step design procedure:

1. Modify R(w) and A(¢) such that they can be approx-
imated well in the mean square sense.

2. Compute f(n1,n2) by solving (14).

The modification of R(w) is based on the following obser-
vation. In the special case 8 = 0 (6) simplifies to

56 (n) = f(n,0) (15)
4

A similar relationship holds for # = 7. Thus, the best
achievable approximation of the frequency slice responses
for 3 =0 and for 3 = 7 is equal to the one obtainable by a
1-D FIR filter of length N. It is a lower bound on the overall
achievable approximation error. In order to approach this

error bound we approximate R (w) and R,(w) with IV tap



filters r¢P(n) and rg?(n) optimally in some sense and use
them instead of r.(n) and ro(n) in (5).

The angular component A(¢) is approximated by a fi-
nite Fourier series. We obtained filters with very good prop-
erties, if the Fourier series contained approximately the first
% terms. If the series is much longer, considerable devia-
tions from the desired filter occur especially in the stop-
bands.

5. DISCUSSION OF THE DESIGN EQUATIONS

The two-step design of polar-separable FIR filters uses the
unconstrained deconvolution problem (14) to transform the
1-D radial and angular filters into a 2-D non-separable im-
pulse response. In this respect RSA belongs to the family
of filter design transformation techniques like the McClellan
transformation.

The expressions in (14) can be determined easily. The
left side of (14) depends only on N, B, and on the weights
wy, but not on radial or angular filter specifications. This
is an advantage, if several filters of the same size but with
different passband properties have to be designed. The sym-
metries

Ey(k, 1) = E1(—k, 1) = Ey (k, —1) = Ey (—k, —0)

Es(k,1) = Ba(—k,1) = Ba(k, —1) = By (—k, —1)
Slg(n, k,1) = Slg(—n, —k, —1)
Ks(k, 1) = Kg(—Fk, —1)

reduce the amount of computation for each term in (14) by
a factor of four or two, respectively. Furthermore, if the 3,
are symmetric with respect to § and 7, the symmetries

Kﬁ(kz )= K%—B(lz k) = K%-*—B(_l: k) = Kﬂ'*ﬁ(_ka )

Slg(-, k,1) =Slz _5(, 1, k) =Slz 45(, —1,k) = Sla—5(-, —k,1)

decrease the number of evaluations of sinc(-) by another
factor of four.

Written as matrices E1, E» and Kg, in (14) are symmet-
ric Toeplitz-Block-Toeplitz. In general, these matrices are
not full rank. However, there is experimental evidence that
(14) can always be made full rank by using a “sufficient”
number of slices with different 8. In general, the larger
N is, the more slices are necessary. A symmetric N? x N2
Toeplitz-Block-Toeplitz matrix is completely specified by
2N? — 2N + 1 values. Fast algorithms exist to solve this
general class of linear equation systems with O(N?®log2 V)
floating point operations [4]. In MATLAB the built in equa-
tion solver is sufficiently fast for filters with N = 30.

In its general form (14) has many degrees of design free-
dom. For most filters of interest, equally angular spaced 3,
are a natural choice. A large number of slices supports good
circular properties of the designed filter, but can cause high
stopband and passband ripples for small N. In most cases
we used uniform weight distributions for wy. Some exper-
iments suggest that non-uniform weight distributions can
improve the circularity of the designed filters for small N.
The weights wg, and wg, can often be varied considerably,
without changing the filter properties significantly.

[ Method | 6 | 6 ]
RSA 0.0308 | 0.0289
NDFT 0.0324 | 0.0519
Uniform Sampling 0.0393 | 0.0519
Nonuniform LLS 0.0360 | 0.0430
McClellan Transformation 0.0238 | 0.0238
Hazra-Reddy Transformation | 0.0587 | 0.0587

Table 1: Passband and stopband ripples for circular lowpass
filter designed with different techniques. (Parts of the table
have been taken from [3].)

6. DESIGN EXAMPLES

First we consider circular symmetric lowpass filters - a com-
mon class of polar-separable filters. If sg (n) is a 1-D equirip-
ple filter, circular 2-D filter designed with RSA are nearly
equiripple in most cases. We designed a 15 x 15 filter with
passband edge w, = 0.47 and stopband edge ws; = 0.67. We
used 48 equally spaced and uniformly weighted radial slices
and set wg, = 1 and wg, = 1. The ripples of the obtained
filter were compared to data given in [3] for filters designed
with nonuniform frequency sampling (NDFT), uniform fre-
quency sampling, nonuniform frequency sampling using a
linear least square (LLS) approach, the McClellan trans-
formation and the frequency transformation proposed by
Hazra and Reddy. Please see [3] for references. Table 1
shows that only the McClellan transformation outperforms
RSA. However, RSA produces filters with better passband
circularity than the McClellan transformation. This be-
comes more significant for increasing w,. Figure 2 shows
the case for w, = 0.77 and ws = 0.97. Another advan-
tage over the McClellan transformation is that even length
filters can be designed. In fact in most cases these new
filters are of exceptional quality with high circularity and
ripple sizes very close to the ripples of the 1-D prototype.
Figure 3 shows the frequency response of a 12 x 12 filter
with wp, = 0.47 and ws = 0.6m. We used 48 equally spaced
and uniformly weighted radial slices and set wg, = 0.5,
wg, = 0. The ripples are §, = 0.0553 and J, = 0.0568
compared to 6 = 0.0552 of the 1-D equiripple filter.

To demonstrate the full flexibility of RSA, we designed a
22 x 22 wedge shaped bandpass filter with a real frequency
response as it is used in image decomposition techniques
based on properties of the human visual system [1]. We
used an equiripple bandpass filter with ws, = 0.157, wp, =
0.37, wp, = 0.77 and w,, = 0.857 for r¢P(n). Ac(¢) was
obtained by first designing a zero phase equiripple lowpass
filter of length N = 21 with w, = 0.17 and ws = 0.37
and then by setting the impulse response values to zero for
all odd n to make it even harmonic. The designed filter
shown in Fig. 4a,b approximates the product of the two
1-D filters closely. The plot of concentric circular slices of
the filter frequency response for radii w = 0.257, w = 0.57
and w = 0.757 in Fig. 5 shows that deviations from the
angular prototype filter are small and occur mostly in the
stopbands. Therefore, RSA is particularly useful to design
FIR filters, which require very accurate angular components
such as steerable filters [2].
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Figure 2: Contour plot at amplitude 0.5 for a lowpass filter
with wp, = 0.77 and ws = 0.97 designed with RSA (solid
line) and with the McClellan transformation (dashed line).

Figure 4: 22 x 22 wedge shaped bandpass filter. (a) Fre-
quency response. (b) Contour plot.
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Figure 3: 12 x 12 lowpass filter with w, = 0.47 and w, = Figure 5: Concentric circular slices through the frequency
0.67

response of the wedge shaped bandpass filter, as marked in
Fig. 4b



