
ANALYSIS OF LIMIT CYCLES IN THE DIRECT FORM DELTA OPERATOR
STRUCTURE BY COMPUTER-AIDED TEST

Juha Kauraniemi

Helsinki University of Technology, Institute of Radio Communications
Laboratory of Signal Processing and Computer Technology

Otakaari 5 A, FIN-02150 Espoo, Finland
Juha.Kauraniemi@hut.fi

ABSTRACT

Delta operator filter structures have received interest due
to good roundoff noise and coefficient sensitivity proper-
ties. However, it has been reported that delta realizations
may produce limit cycles. In this paper, limit cycle prob-
lem in the direct form delta operator structure is studied by
using a computer-aided test. The test determines exact am-
plitude and period of the maximum amplitude limit cycle,
including the case where the limit cycles are absent. Using
this knowledge the required wordlength to satisfy limit
cycle performance specifications can be accurately deter-
mined. It is shown that with narrowband lowpass filters
limit cycles, if they exist, are of much smaller amplitude
than those of the traditional delay realized direct form
structure.

1. INTRODUCTION

When the sampling rate is high compared to the signal
bandwidth the delta operator realized recursive digital fil-
ters have been found to have superior roundoff noise and
coefficient sensitivity properties over the delay realizations
[1-3]. However, it has been noted that when fixed point
arithmetic is used, delta operator structures may exhibit
limit cycles [4]. In our recent work, we studied zero input
limit cycles in the transposed direct form II delta operator
structure (DFIIt) [5]. It was found out that the delta struc-
ture cannot be guaranteed to be free of limit cycles by us-
ing a frequency domain criterion.

Frequency domain criteria are typically sufficient crite-
ria, i.e., if they fail the presence of the limit cycles is not
guaranteed. In addition, they don’t give information about
the amplitudes of the limit cycles and being based on a
sector condition they are not applicable when two’s com-
plement truncation is used [5]. Many more or less simple
upper bounds for limit cycles have been proposed, e.g.,
one in [7]. However, these bounds are typically too pessi-
mistic and do not predict the absence of limit cycles.

In this paper, the zero-input limit cycles in the second-
order delta operator DFIIt structure are studied by using

exhaustive search method [6]. This type of test can be used
with any type and number of quantizations. Differing from
the one presented in [6], algorithm described here deter-
mines in addition the maximum amplitude initial state and
the period of the maximum amplitude limit cycle. A major
drawback of the exhaustive search is that, depending on
the filter, running time can be large. We propose a simple
search algorithm which reduces the number of computa-
tions significantly, making the use of the exhaustive search
feasible.

It is shown that limit cycles may exist in the delta direct
form structure, but for a narrowband lowpass filter they are
very small in amplitude. Moreover, when compared to the
traditional delay realized direct form structure the limit
cycle performance of the delta direct form structure is
much better. In order to have low roundoff noise, it is
customary to implement inverse delta operators with
higher precision than input and output signals [2,3]. This
increases the implementation complexity and the number
of additional bits should be small. In [3] it was shown that
good roundoff noise performance can be obtained by using
only few bits longer precision for the inverse delta opera-
tors. Here it is shown that this type of implementation can
have good limit cycle performance.

2. LIMIT CYCLE  BOUNDS

A recursive part of the second-order delta DFIIt is shown
in Fig. 1, where δ−1 = ∆z−1/(1−z−1) is the causal inverse of
the delta operator and ∆ is a free parameter that can be
chosen, e. g., to minimize the output roundoff noise [3].
The coefficients are related to the z-domain denominator
coefficients as given in Table 1. It has been found that es-
sential for good roundoff noise performance is that inverse
delta operations are performed with higher precision than
output wordlength (single precision = (B + 1) bits) [2,3].
Here inverse delta operations are performed in enhanced
precision, (B + Bd + 1) bits, where Bd ≤ Bc and Bc is the
number of fractional bits in the filter coefficients. If Bd =
Bc we call this double precision. The system under zero
input is described by the difference equations:
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where quantizer Q0 is to single precision and other quan-
tizers are to enhanced precision. If ∆ = 1 quantizations Q1

and Q3 do not exist and if double precision is used Q2 and
Q4 do not exist.

When the system exhibits a limit cycle, the state vari-
ables are absolutely upper bounded by
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where gi,k(n) is the inverse z-transform of the transfer func-
tion from the kth quantization error source to the ith state
variable wi, ek is the maximum absolute value of the error
of the kth quantization and ek = 0 if kth quantization does
not exist. The types of the quantizers are not limited, but in
this text we concentrate on the rounding. Thus, when sin-
gle precision is normalized to integers  e0 = 2−1  and  ek =
2−(1 + Bd) for k = 1,…,4 if corresponding quantization exists.
The error transfer functions can be solved from (1). All the
error transfer functions Gi,k(z) = Ni,k(z)/Di,k(z) have a com-
mon denominator Di,k(z) = 1 + a1z

−1 + a2z
−2 for all i,k and

only the numerators are given.
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where ai are the denominator coefficients of the z-domain
transfer function. Unfortunately, the summation in (2) can-
not be solved in closed form and it has to be evaluated
numerically as in this paper or some upper bound ap-
proximation may be used, for example [7]. A tight bound
is desirable, because it determines the number of points in
the search space and the maximum period of the limit cy-
cle.

Because a digital filter under zero input is a finite state
machine, (zero input) limit cycles are always periodic.
The maximum period is limited by the number of states in
the search space

T M M Bd
max ( int( ) )( int( ) )= + +2 1 2 1 21 2

2 . (11)

It is seen that the number of bits in enhanced precision
affects the amount of computations.

3. EXHAUSTIVE SEARCH ALGORITHM

A simple approach to search the limit cycles is to start
from an initial state vector w(0) and compute the filter
recursion until one of the four conditions is met: 1) Limit
cycle is identified. Because the input to the filter is zero
and filter is time invariant (also the quantization nonline-
arity is independent of time) the state of the system at step
n completely defines the state of the system at step n + 1.
So, if the state vector w(0) is repeated at the time step p,
we know that a limit cycle of period p has occurred. 2) The
state vector has grown out from the search space.  3) The
state has converged to a point that produces zero output.
From (1) it is seen that output is identically zero for all n ≥
n0 if y(n0) and w2(n0) are equal to zero. 4) The maximum
number of steps (11) has expired. The same procedure is
repeated until the whole search space has been evaluated
or the maximum amplitude limit cycle is identified. How-
ever, this approach would lead to a high number of com-
putations and thus, to a long run time. Here we use an al-
ternative method, which reduces the number of computa-
tions significantly.

The search algorithm goes as follows: After computing
bounds for the state variables, an array of size (11) is re-
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Figure 1: Recursive part of the second-order delta DFIIt
structure. Quantizations Q1 and Q3 exist in the operators if
∆ < 1.

Table 1
Relations between the denominator coefficients of the

second order delta- and  z-polynomials

α 1 ( )2 1+ a ∆ α 2 ( )1 1 2
2+ +a a ∆



served from the memory and all its elements are initialized
to zero. Before each initial state and filter recursion step it
is checked if the memory location corresponding to this
state is zero or not. If it is zero, a number, trajectory num-
ber, is written to that memory location. Different trajectory
number is given for each initial state, which is not a part of
some already computed trajectory. If the memory location
differs from zero, the state has been already scanned and
algorithm moves to the next initial state. Thread of the
current initial state is as well stopped if the conditions 2) or
3) given earlier in this chapter are satisfied.

If at some time instant the trajectory number and the
value in the memory are the same, a limit cycle has oc-
curred. The period of the limit cycle is obtained by starting
filter recursion from the known state of limit cycle and
continuing until this state is repeated. By the same time the
maximum amplitude state of the limit cycle is searched.
The limit cycle is stated as a maximum amplitude limit
cycle candidate, if its w1 component is larger in absolute
value than that of the previous candidate (the quantized
state variable w1(n) is observed directly from the output,
see equation (1)). Limit cycles are typically relatively short
compared to the size of the search space. In addition, many
of the initial states converge to zero or to the same limit
cycle. Thus, the time penalty from recomputing the states
of the limit cycle is small.

Since rounding quantization is symmetrical, i.e., Q(−x)
= −Q(x) only the initial states in the upper half plane has to
be searched, Fig. 2. The initial states are scanned row wise
starting from w(0) = [M1 ×]T, where × is M2 or − M2. When
the initial state component w1(0) is equal to the state vari-
able w1 of the maximum amplitude limit cycle candidate,
the test stops. At this point limit cycles having larger w1

component are not possible, because all those states have
already been tested.

4. EXAMPLES

As an example sections of a narrowband fourth-order el-
liptic lowpass filter are studied. The z-domain denominator
polynomials of the sections are D1(z) = 1 − 1.914z−1 +
0.950z−2 and D2(z) = 1 − 1.828z−1 + 0.843z−2. Single preci-

sion wordlength is eight bits and coefficients of the delta
realizations are quantized to seven fractional bits plus a
sign bit. Simulation results for two different delta configu-
rations are shown in Table 2, where also noise gain (NG)
values for the L∝ -scaled sections are included. In the fifth
row is the amplitude of the limit cycle at the output and
w1(0), w2(0) are the initial states of the limit cycle.

In the first delta realization double precision and in this
case roundoff noise optimal ∆ = 1 is used [3]. Amplitude
of the limit cycle in the output of the filter is only one least
significant bit (LSB) with both the sections, see Fig. 3 and
4. In the second configuration, the parameter ∆ is likewise
chosen to minimize the output roundoff noise. Three addi-
tional bits are needed to keep the noise increase under 3
dB when compared to the double precision system [3]. In
these cases the period one limit cycles are internal, i.e.,
they are not seen at the output. In a delay realization re-
sulting limit cycle is a DC or period one limit cycle with
both the example filter sections, Table 3.

The run times of the test are included in Table 2. Test
was written in the C programming language and run in a
PC-computer with the Intel Pentium 120 MHz processor.

5. CONCLUSIONS

We studied the limit cycle problem in the direct form delta
operator structure using computer-aided test. A fast ex-
haustive search algorithm was proposed. It was found that
narrowband lowpass systems may sustain very small am-
plitude limit cycles and performing inverse delta opera-
tions in less than double precision does not necessarily
decrease the performance. In fact, with our example filter,
the enhanced precision structure with roundoff noise opti-
mal ∆ parameter is free of zero input limit cycles. With

w1

w2

M2

M1

Figure 2: The search grid in the state space where M1 and
M2 are bounds obtained from equation (2).

Table 2.
Results of the example with the delta structures

Sec #1 #2
Bd 7 3 7 3
∆ 1 0.25 1 0.25

NG (dB) 1.51 2.85 0.57 1.64
Period 155 1 216 1
Output 1/27 0 1/27 0
w1(0) 66/214 3/210 64/214 3/210

w2(0) 4/214 −1/210 1/214 1/210

Time (s) 0.19 0.06 0.03 0.03

Table 3.
Results of the example with the delay DFI structure

Sec NG Period Output w1(0) w2(0)
#1 24.4 1 12/27 12/27 12/27

#2 23.4 1 32/27 32/27 32/27



narrowband lowpass filters the delta operator structure is
superior to the delay structure in the limit cycle perform-
ance.
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Figure 3: The maximum amplitude limit cycle in the sec-
tion #1. a) The filter output (solid line), the state variable
w1 (dashed line) and the state variable w2 (dotted line).
Single precision is normalized to integers. b) The limit
cycle in the state space. Double precision is normalized to
integers.
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Figure 4: The maximum amplitude limit cycle in the sec-
tion #2.


