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ABSTRACT

This paper presents a method to minimize the �nite
wordlength error in output signals of linear phase 2-D FIR
�lters. The �nite wordlength errors can easily be analyzed
in the frequency domain when the input signal statistics are
known. In the case of white input signals, impulse responses
corresponding to all levels of input impulses are optimized
so as to minimize the errors. A new ROM-based �lter struc-
ture is proposed in which the optimized impulse responses
are stored in the ROM. The output signals are generated
by superposing the impulse responses corresponding to the
input levels. Many results of simulations con�rm that the
output signals of the proposed �lters have far less errors
than those of conventional �lters.

1. INTRODUCTION

Two dimensional FIR digital �lters are used in many ap-
plications such as image signal processing. In the practical
implementations, the �lters must have �nite wordlength of
both coe�cients and internal signals. Rounding o� the in-
ternal signals naturally causes errors in the output signal.
Many methods have been proposed to design optimal 2-
D FIR digital �lters in the Chebyshev sense, even if the
�lter length and wordlength of coe�cients are given as �-
nite numbers[3]-[5]. Those methods, however, ignore �nite
wordlength e�ects of internal signals in the design proce-
dure. If the internal signals of the �lters have the �nite
wordlength, the products in the �lters are rounded o� and
thus nonlinear operations are introduced. Then the round-
o� errors are most properly analyzed by their impulse re-
sponses rather than frequency responses. The deteriora-
tions in the impulse responses are dependent on the levels
of the input impulses. In this paper, we propose a method
to minimize the errors of the impulse responses in the fre-
quency domain by using MILP for every possible input level.
To realize the minimal error �lters, the optimized responses
of every input level are stored in a ROM and the output
signals are generated by superposing the stored responses
which correspond to the input signal. Many examples show
the proposed �lters are superior to the conventional ones.

2. ROM-BASED FILTER STRUCTURE

Generally, a response corresponding to an input impulse of
a unit level is called as an impulse response. Hereafter, we
also call a response corresponding to an input impulse of
any level as an impulse response.
In this paper, we deal with linear phase 2-D FIR digital

�lters implemented as the direct form for image signal pro-
cessing. It is assumed that all internal signals are expressed
as �xed point binary numbers of a speci�ed wordlength and
that any samples of the impulse responses also have the
same wordlength. Conventional �lters have several mul-

tipliers and the products are rounded o� to the speci�ed
wordlength.
We propose a �lter structure having a ROM as shown

in Fig. 1. Figure 1 shows a 1-D �lter structure, but 2-D
structures can be implemented in the same way. Superposi-
tions of the shifted impulse responses can make the output
signals, as any input signals are trains of impulses of di�er-
ent levels. The impulse responses to be stored in the ROM
are optimized so that the �lter has the minimal error. De-
pending on the input signal level, the impulse responses are
successively referred and superposed to generate the output
signal. Accordingly the roundo� operations are avoided un-
like the conventional �lters.

3. MINIMIZATION OF FINITE

WORDLENGTH ERROR

3.1. Output signal estimation sequence (OSES)

Now we de�ne the ideal zero phase 2-D FIR �lter as Fd,
and its frequency response as Hd(!1; !2). The amplitude
of Hd(!1; !2) is 1:0 in whole passband, and 0:0 in whole
stopband. Consider a given input image signal which is
represented as binary numbers of a speci�ed wordlength.
Let the input signal be x(n1; n2) and its size be N1 � N2.
Namely, x(n1; n2) satis�es x(n1; n2) = 0, n1 < 0, n1 � N1,
n2 < 0 or n2 � N2. The region where an image signal is de-

�ned is referred to as �. We de�ne the vector n as [n1; n2]
T

and ! as [!1; !2]
T . Then x(n1; n2) and Hd(!1; !2) can be

written as x(n) and Hd(!), respectively. The discrete-time
Fourier transform (DTFT) of the ideal output of Fd can be
written as

Yd(e
j!1 ; e

j!2) =
X

n2�

x(n)Hd(!)e
�jn

T
!
: (1)

Now let the tap size of the proposed �lter be T1 � T2.
The analysis will be done for odd T1 and T2 as an ex-
ample. Consider the input impulse at the point n and
thus having the value x(n). The corresponding impulse re-
sponse is expressed as h(x(n);m), n1 � (T1 � 1)=2 � m1

� n1+(T1� 1)=2, n2� (T2� 1)=2 � m2 � n2+(T2� 1)=2.

Now we de�ne H(x(n);!)e�jn
T
! as the DTFT of the

impulse response h(x(n);m). The output of the proposed
�lter can be written as

Y (e
j!1 ; e

j!2) =
X

n2�

H(x(n);!)e
�jn

T
!
: (2)

The error in the output signal is given as

R(e
j!1 ; e

j!2) = Y (e
j!1 ; e

j!2)� Yd(e
j!1 ; e

j!2): (3)

Then we de�ne the error which is included in H(x(n);!)
as R(x(n);!), and the error can be written as

R(x(n);!) = H(x(n);!)� x(n)Hd(!): (4)



By using (1), (2), (3) and (4), the error R(ej!1 ; ej!2) can
be written as

R(e
j!1 ; e

j!2) =
X

n2�

R(x(n);!)e
�jnT!

: (5)

R(x(n);!) is a real function of x(n) and !. So if ! is
�xed, R(x(n);!), n1 = 0; 1; � � �, n2 = 0; 1; � � � is a real
sequence. We call this real sequence as an output signal
estimation sequence (OSES). Equation (5) is the DTFT of
the OSES. Then an input signal x(n) determines an OSES
R(x(n);!), n1 = 0; 1; � � �, n2 = 0; 1; � � � corresponding to
each frequency. The output error at !a can be referred to
as the value of the DTFT at!a of the OSES corresponding
to the frequency !a.

3.2. Mean squared output error spectrum
(MSOES)

In this section, we show that the MSOES can be analyzed,
even if the given input signals are not deterministic. Let
the wordlength of the input signals be l and all the levels

of input impulses be xi, i = 0; � � � ; L � 1 where L = 2l.
The OSES corresponding to a frequency!a is R(x(n);!a)
corresponding to an input signal x(n) and then it is trains
of elements in a set 	!a

given by

	!a
= fR(xi;!a) j i = 0; � � � ; L� 1g: (6)

Nowwe assume that the stochastic input signals are station-
ary independent process and that their probability density
function is de�ned as p(xi), i = 0; � � � ; L� 1. Then the OS-
ESs become stationary independent and thus their proba-
bility density function q (R(xi;!a)) is obtained as

q (R(xi;!a)) = p(xi); i = 0; � � � ; L� 1: (7)

The mean power spectral density function of the OSESs

corresponding to the frequency !a is de�ned as E[S(ej!)]
and given in (23). Then the MSOES at frequency !a is

obtained as E[S(ej!a)]. The second term in the right hand
side in (23) becomes equivalent to the delta function and
very large at DC, when N1 and N2 are in�nite. So in this
paper, the MSOES E[P(!)] is written as

E[P(!)]

�

�
Rmse(0) + (N1N2 � 1)R

2

me(0); !=0
Rmse(!)�R2

me(!) otherwise
(8)

where

Rme(!) =

L�1X
i=0

R(xi;!)p(xi); (9)

Rmse(!) =

L�1X
i=0

R
2
(xi;!)p(xi): (10)

If Rme(0) 6= 0, the MSOES has very large error at DC. In
other frequencies, the MSOES is given as the variance of
the error responses R(xi;!a), i = 0; � � � ; L� 1.

3.3. Optimization of All the Responses

From (8), the MSOES is given as the variance of the error
responses. Then the MSOES at frequencies but DC can be
written as

E[P(!)] =

L�1X
i=0

p(xi) fR(xi;!)�Rme(!)g
2
: (11)

Only by optimizing all the error responses simultaneously,
an optimum solution can be obtained. It is, however, dif-
�cult to carry out that optimization due to its enormous

computing cost. Accordingly, we propose a method that
jjR(xi;!)� Rme(!)jj, i = 0; � � � ; L� 1 are minimized un-
der the condition R(xi;0) = 0 , iteratively, while the mean
error response Rme(!) is updated. By using that method,
the MSOES shown in (8) can be minimized.
In the spatial domain, the responses h(xi;n) of linear

phase �lters have the symmetry. Then H(xi;!) can be
written as

H(xi;!) = A(!)hxi (12)

where A(!) is a vector whose elements are trigonomet-

ric functions and hxi is a vector whose elements are the
independent coe�cients of h(xi;n)[2]. We propose the fol-
lowing algorithm to obtain the responses corresponding to
all the input levels.

1. Let elements in a set � be probability densities p(xi),
i = 0; � � � ; L� 1, R�me(!) := 0 and s := 0.

2. If the set � is empty, then stop.

3. Choose p(xk) which is the largest value in all elements
in the set �. Exclude the element p(xk) from the set
�. Let Hd(!) := xkHd(!).

4. The following mixed integer linear programing (MILP)
problem is solved.

Minimize jjA(!)hxk �Hd(!)�R�me(!)jj1;

subject to A(0)hxk = Hd(0) and each element
of hxk has wordlength l.

5. By using the obtained hxk , R
�

me(!) is updated by

R
�

me(!)

:=
sR�me(!) + p(xk)

�
A(!)hxk �Hd(!)

	
s+ p(xk)

: (13)

6. Let s := s+ p(xk) and go to Step 2.

In the practical image signal processing, the probability
density functions p(xi) of image signals are not known a
priori. To prepare for various input signals, the probability
density function used in the algorithm is given as a uniform
distribution. Then the probability density function p(xi)
can be written as

p(xi) =
1

L
; i = 0; � � � ; L� 1: (14)

Let xme be a mean value of input signals x(n). In Step
3, the largest values of the probability densities are succes-
sively chosen. If the probability density function p(xi) is the
uniform distribution, those largest values can not be deter-
mined uniquely. Therefore in that case, we modify Step 3
as follows.

3. Choose xk which is the nearest value to xme in all el-
ements in the set �. Exclude the element xk from the
set �. Let Hd(!) := xkHd(!).

If a probability density function of input signals is known a
priori, the original procedure is used as Step 3. Then better
solutions can be obtained.
The MILP problem can be solved by using the branch

and bound algorithm. R�me(!) is the provisional mean
error response during the optimization of the error re-
sponses. In Step 4, the di�erence between the error response
H(xr;!)� xrHd(!) and R�me(!) is minimized. The algo-
rithm minimizes not the error responses but the MSOES.
The responses H(xi;!) are optimized so as to have similar
error responses. Accordingly, H(xk;!) optimized by using
the algorithm may have large deviations from xkHd(!).



4. DESIGN EXAMPLES

The proposed �lters obtained by using the above algorithm
are compared with the conventional �lters where the prod-
ucts are rounded o�. Filter speci�cations are as follows.

tap size : 9� 9
wordlength : 6; 8

Type I passband : j!1j+ j!2j � 0:2�
stopband : j!1j+ j!2j � 0:6�

Type II passband : j!1j+ j!2j � 0:04�
stopband : j!1j+ j!2j � 0:4�

The coe�cients of the conventional �lters are designed by
using MILP. Those coe�cients are designed under the con-
dition that the errors at DC in the frequency responses of
the conventional �lters are strictly zero, because the power
spectrums of image signals are usually very high at DC.
To calculate PSNRs of output images of the conventional
and the proposed �lters, we need a reference which is re-
garded as the output images of the ideal �lters. For this
purpose, a 25�25 tap FIR �lter is designed by using linear
programing[1], which has �67:7dB Chebyshev error under
the DC response condition.
Many standard images are quantized to 6 and 8 bits.

Those quantized images are �ltered by using the proposed,
the conventional and the reference �lters. The binary arith-
metic is carried out in the proposed and the conventional �l-
ters, but the real arithmetic in the ideal �lter. Then PSNRs
of all the output images of the proposed and the conven-
tional �lters are calculated and shown in Tables 1(a), (b),
(c) and (d). Figure 2 shows the quantized image of Lenna
with wordlength 6. Figure 3 shows the output image by
using the reference �lter. Figures 4 and 5 show the output
images of the proposed and the conventional �lters which
are designed so as to meet the speci�cation wordlength 6
and Type I. From Figs.4 and 5, although the output image
by the conventional �lter has false contours, they are not
observed in the image by the proposed �lter. Tables 1 (a),
(b), (c) and (d) indicate that the proposed design method
is especially e�ective when the wordlength is short.

5. CONCLUSION

This paper proposes a method to minimize the �nite
wordlength error in the 2-D linear phase FIR digital �lters.
In the proposed method, the impulse responses correspond-
ing to input impulses of all possible levels are optimized.
The proposed �lters have ROM where the optimized im-
pulse responses are stored. The output signals are gener-
ated by superposing the impulse responses corresponding to
the input impulses. In many design examples, we con�rmed
the superiority of the proposed �lters to the conventional
�lters, where the roundo� operations are carried out.

REFERENCES

[1] J. V. Hu and L. R. Rabiner, \Design techniques for two-
dimensional digital �lters," IEEE Trans. Audio Electroa-
coust., vol. AU-20, pp. 259-257, Oct. 1972.

[2] C. Charalambous, \The performance of an algorithm for
minimax design of two-dimensional linear phase FIR digital
�lters," IEEE Trans. on Circuits & Syst., vol. CAS-32, no.
10, pp. 1016-1028, Oct. 1985.

[3] P. Siohan and A. Benslimane, \Finite precision design of
optimal linear phase 2-D FIR digital �lters," IEEE Trans.
on Circuits & Syst., vol. 36, no. 1, pp. 11-22, Jan. 1989.

[4] N. Benvenuto, M. Marchesi, and A. Uncini, \Applications of
simulated annealing for the design of special digital �lters,"
IEEE Trans. on Signal Process., vol. 40, no. 2, pp. 323-332,
Feb. 1992.

[5] M. Park and W. Song, \A new design method of 2-d linear
phase FIR �lters with �nite-precision coe�cients," IEEE
Trans. on Circuits & Syst., vol. 41, no. 7, pp. 478-482, Jul.
1994.

A THE MEAN POWER SPECTRAL DENSITY
FUNCTION OF OSES

In this section, the OSES R(x(n);!a) is called v(n),
brie
y. The stochastic OSESs R(x(n);!a) are stationary
independent process and have the probability density func-
tion q(R(xi;!a)) i = 0; � � � ; L � 1. By using (6) and (7),
the mean and the variance of OSESs can be obtained as

E[v(n)] =

L�1X

i=0

R(xi;!a)p(xi) (15)

and

V [v(n)] =

L�1X

i=0

R
2
(xi;!a)p(xi)�E

2
[v(n)]: (16)

Now we de�ne another sequence v̂(n) satisfying

v̂(n)
4

= v(n)� E[v(n)]: (17)

Then v̂(n) also satis�es

E[v̂(n)] = 0; (18)

E[v̂
2
(n)] = E[v

2
(n)]�E

2
[v(n)] = V [v(n)] (19)

and

E[v̂(n)v̂(n�m)] = 0 (20)

where m 6= 0. Now let E[S(ej!)] be the mean power

spectral density function of v(n) and E[Ŝ(ej!)] be that of

v̂(n), respectively. By using (20), E[Ŝ(ej!)] is obtained as

E[Ŝ(e
j!

)] = E[v̂
2
(n)] (21)

By using v̂(n), E[S(ej!)] can be written as

E[S(e
j!

)] = E[Ŝ(e
j!

)] +
E2[v(n)]

N1N2

�����
X

n2�

e
�jnT

!

�����

2

+
2E[v(n)]

N1N2

X

n2�

E[v̂(n)]
X

m2�

cos[n�m]
T
!: (22)

By substituting Eqs.(18), (19) and (21), (22) can be rewrit-
ten as

E[S(e
j!

)] = V [v(n)] +
E2[v(n)]

N1N2

�����
X

n2�

e
�jnT

!

�����

2

: (23)
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Figure 1. Rom-based �lter structure



Table 1. PSNRs of the output images

(a) Wordlength 6 and Type I (b) Wordlength 8 and Type I
proposed conventional

Lenna 26.0 [dB] 15.2 [dB]
Swiss mountain 22.9 [dB] 17.4 [dB]

Girl 21.0 [dB] 14.2 [dB]
Moon 26.1 [dB] 15.6 [dB]
Title 26.1 [dB] 9.94 [dB]

proposed conventional

Lenna 33.0 [dB] 30.5 [dB]
Swiss mountain 30.7 [dB] 30.5 [dB]

Girl 28.6 [dB] 27.2 [dB]
Moon 33.4 [dB] 30.2 [dB]
Title 30.4 [dB] 28.9 [dB]

(c) Wordlength 6 and Type II (d) Wordlength 8 and Type II
proposed conventional

Lenna 24.5 [dB] 5.3 [dB]
Swiss mountain 21.5 [dB] 8.5 [dB]

Girl 19.6 [dB] 4.0 [dB]
Moon 24.6 [dB] 5.1 [dB]
Title 22.8 [dB] 7.1 [dB]

proposed conventional

Lenna 32.1 [dB] 25.5 [dB]
Swiss mountain 30.3 [dB] 27.4 [dB]

Girl 27.3 [dB] 23.1 [dB]
Moon 32.3 [dB] 25.6 [dB]
Title 29.9 [dB] 21.9 [dB]

Figure 2. Input image (lenna 64 bit/pixel)

Figure 3. Ideal output image

Figure 4. Output image by the proposed �lter

Figure 5. Output image by the conventional �lter


